Spelling suggestions: "subject:"implantación ionica""
1 |
Relaxação estrutural de camadas pseudomórficas de SiGe/Si(100) induzida pela implantação iônica de He ou Si e tratamento térmicoMörschbächer, Marcio José January 2005 (has links)
O Si tensionado (sSi) é um material com propriedades de transporte eletrônico bastante superiores as do Si, sendo considerado como uma alternativa importante para a produção de dispositivos MOSFET (transistor de efeito de campo metal-óxido-semicondutor) de mais alta performance (e.g. freqüências de operação f>100 GHz). O sSi é obtido através do crescimento epitaxial de Si sobre um substrato de mesma estrutura cristalina, porém com parâmetro de rede diferente. Esta tese apresenta uma investigação detalhada de um novo método que possibilita a produção de camadas relaxadas de Si1xGex com espessuras inferiores a 300 nm, consideradas como a melhor alternativa tecnológica para a produção de sSi. Este método envolve a implantação de íons de He+ ou de Si+ em heteroestruturas pseudomórficas de Si1-xGex/Si(001) e tratamentos térmicos. Foram estudados os efeitos dos diversos parâmetros experimentais de implantação e tratamentos térmicos sobre o processo de relaxação estrutural, utilizando-se heteroestruturas pseudomórficas de Si1-xGex/Si(001) crescidas via deposição de vapor químico, com distintas concentrações de Ge (0,19x 0,29) e com espessuras entre 70 e 425 nm. Com base no presente estudo foi possível identificar diversos mecanismos atômicos que influenciam o processo de relaxação estrutural das camadas de Si1-xGex/Si(001). O processo de relaxação é discutido em termos de um mecanismo complexo que envolve formação, propagação e interação de discordâncias a partir de defeitos introduzidos pela implantação. No caso das implantações de He, por exemplo, descobrimos que podem ocorrer perdas de He durante as implantações e que este efeito influencia negativamente a relaxação de camadas finas. Além disso, também demonstramos que os melhores resultados são obtidos para energias e fluências de implantação que resultam na formação de bolhas planas localizadas no substrato de Si a uma distância da interface equivalente a uma vez a espessura da camada de SiGe. O grau de relaxação satura em 50% para camadas de SiGe com espessura 100 nm. Este resultado é discutido em termos da energia elástica acumulada na camada de SiGe e da retenção de He. No caso de implantações de Si, discutimos a formação de defeitos tipo {311} e sua transformação térmica em discordâncias. Este estudo resultou numa visão abrangente dos principais fatores limitantes do processo, bem como na otimização dos valores de parâmetros experimentais para a produção de camadas de SiGe com alto grau de relaxação e com baixa densidade de defeitos.
|
2 |
Nanoestruturas luminescentes de Ge e Sn em camadas de SiO/sub 2/ implantadas com íonsLopes, João Marcelo Jordão January 2005 (has links)
Neste trabalho estudam-se as propriedades de nanoestruturas de Ge e Sn formadas em amostras de SiO2/Si(100) através dos processos de implantação iônica e tratamento térmico. A formação de nanocristais de Ge foi investigada em função de tratamentos térmicos em ambiente de N2. Os resultados obtidos foram correlacionados com as propriedades de luminescência das amostras, sendo feita uma discussão sobre os mecanismos atômicos envolvidos no processo de crescimento dos nanocristais de Ge, bem como seus efeitos na criação de centros luminescentes no interior da camada de SiO2, que são responsáveis por intensas bandas de fotoluminescência (PL) nas regiões espectrais do azul-violeta (≈ 3,2 eV) e ultravioleta (≈ 4,2 eV). Além disso, experimentos de irradiação com diferentes íons (He+, Si+, Kr++, Au+) foram realizados antes da implantação do Ge com o objetivo de estudar o efeito de memória que os danos criados pela irradiação apresentam sobre as propriedades estruturais e luminescentes das amostras de SiO2/Si(100) No estudo das amostras de SiO2/Si(100) implantadas com Sn, a síntese de nanopartículas de Sn foi estudada em função da temperatura e do ambiente de tratamento térmico (N2 e vácuo). De maneira pioneira mostrou-se que através da manipulação desses parâmetros é possível formar desde grandes nanocristais bi-fásicos de Sn (≈ 12 a 25 nm) em estruturas concêntricas com núcleo de β-Sn e camada externa de SnOx, até pequenas nanopartículas de Sn com diâmetros de ≈ 2 nm e uniformemente distribuídas ao longo da camada de SiO2. Além disso, observou-se que a evolução estrutural do sistema de nanopartículas de Sn influencia diretamente as características das emissões de PL azul-violeta e UV. Por fim, um outro aspecto das nanoestruturas de Sn foi estudado: a formação de um denso arranjo de ilhas epitaxiais de β-Sn na região de interface SiO2/Si. Este sistema de nano-ilhas, que cresce epitaxialmente, é uniformemente distribuído sobre a superfície do Si, apresentando uma pequena dispersão em tamanho e tendência a se auto-organizar. A criação desse sistema de nano-ilhas epitaxiais através da utilização da implantação iônica é um processo inédito, sendo discutida aqui com base nas propriedades de equilíbrio do sistema Sn-Si.
|
3 |
Nanoestruturas luminescentes de Ge e Sn em camadas de SiO/sub 2/ implantadas com íonsLopes, João Marcelo Jordão January 2005 (has links)
Neste trabalho estudam-se as propriedades de nanoestruturas de Ge e Sn formadas em amostras de SiO2/Si(100) através dos processos de implantação iônica e tratamento térmico. A formação de nanocristais de Ge foi investigada em função de tratamentos térmicos em ambiente de N2. Os resultados obtidos foram correlacionados com as propriedades de luminescência das amostras, sendo feita uma discussão sobre os mecanismos atômicos envolvidos no processo de crescimento dos nanocristais de Ge, bem como seus efeitos na criação de centros luminescentes no interior da camada de SiO2, que são responsáveis por intensas bandas de fotoluminescência (PL) nas regiões espectrais do azul-violeta (≈ 3,2 eV) e ultravioleta (≈ 4,2 eV). Além disso, experimentos de irradiação com diferentes íons (He+, Si+, Kr++, Au+) foram realizados antes da implantação do Ge com o objetivo de estudar o efeito de memória que os danos criados pela irradiação apresentam sobre as propriedades estruturais e luminescentes das amostras de SiO2/Si(100) No estudo das amostras de SiO2/Si(100) implantadas com Sn, a síntese de nanopartículas de Sn foi estudada em função da temperatura e do ambiente de tratamento térmico (N2 e vácuo). De maneira pioneira mostrou-se que através da manipulação desses parâmetros é possível formar desde grandes nanocristais bi-fásicos de Sn (≈ 12 a 25 nm) em estruturas concêntricas com núcleo de β-Sn e camada externa de SnOx, até pequenas nanopartículas de Sn com diâmetros de ≈ 2 nm e uniformemente distribuídas ao longo da camada de SiO2. Além disso, observou-se que a evolução estrutural do sistema de nanopartículas de Sn influencia diretamente as características das emissões de PL azul-violeta e UV. Por fim, um outro aspecto das nanoestruturas de Sn foi estudado: a formação de um denso arranjo de ilhas epitaxiais de β-Sn na região de interface SiO2/Si. Este sistema de nano-ilhas, que cresce epitaxialmente, é uniformemente distribuído sobre a superfície do Si, apresentando uma pequena dispersão em tamanho e tendência a se auto-organizar. A criação desse sistema de nano-ilhas epitaxiais através da utilização da implantação iônica é um processo inédito, sendo discutida aqui com base nas propriedades de equilíbrio do sistema Sn-Si.
|
4 |
Relaxação estrutural de camadas pseudomórficas de SiGe/Si(100) induzida pela implantação iônica de He ou Si e tratamento térmicoMörschbächer, Marcio José January 2005 (has links)
O Si tensionado (sSi) é um material com propriedades de transporte eletrônico bastante superiores as do Si, sendo considerado como uma alternativa importante para a produção de dispositivos MOSFET (transistor de efeito de campo metal-óxido-semicondutor) de mais alta performance (e.g. freqüências de operação f>100 GHz). O sSi é obtido através do crescimento epitaxial de Si sobre um substrato de mesma estrutura cristalina, porém com parâmetro de rede diferente. Esta tese apresenta uma investigação detalhada de um novo método que possibilita a produção de camadas relaxadas de Si1xGex com espessuras inferiores a 300 nm, consideradas como a melhor alternativa tecnológica para a produção de sSi. Este método envolve a implantação de íons de He+ ou de Si+ em heteroestruturas pseudomórficas de Si1-xGex/Si(001) e tratamentos térmicos. Foram estudados os efeitos dos diversos parâmetros experimentais de implantação e tratamentos térmicos sobre o processo de relaxação estrutural, utilizando-se heteroestruturas pseudomórficas de Si1-xGex/Si(001) crescidas via deposição de vapor químico, com distintas concentrações de Ge (0,19x 0,29) e com espessuras entre 70 e 425 nm. Com base no presente estudo foi possível identificar diversos mecanismos atômicos que influenciam o processo de relaxação estrutural das camadas de Si1-xGex/Si(001). O processo de relaxação é discutido em termos de um mecanismo complexo que envolve formação, propagação e interação de discordâncias a partir de defeitos introduzidos pela implantação. No caso das implantações de He, por exemplo, descobrimos que podem ocorrer perdas de He durante as implantações e que este efeito influencia negativamente a relaxação de camadas finas. Além disso, também demonstramos que os melhores resultados são obtidos para energias e fluências de implantação que resultam na formação de bolhas planas localizadas no substrato de Si a uma distância da interface equivalente a uma vez a espessura da camada de SiGe. O grau de relaxação satura em 50% para camadas de SiGe com espessura 100 nm. Este resultado é discutido em termos da energia elástica acumulada na camada de SiGe e da retenção de He. No caso de implantações de Si, discutimos a formação de defeitos tipo {311} e sua transformação térmica em discordâncias. Este estudo resultou numa visão abrangente dos principais fatores limitantes do processo, bem como na otimização dos valores de parâmetros experimentais para a produção de camadas de SiGe com alto grau de relaxação e com baixa densidade de defeitos.
|
5 |
Relaxação estrutural de camadas pseudomórficas de SiGe/Si(100) induzida pela implantação iônica de He ou Si e tratamento térmicoMörschbächer, Marcio José January 2005 (has links)
O Si tensionado (sSi) é um material com propriedades de transporte eletrônico bastante superiores as do Si, sendo considerado como uma alternativa importante para a produção de dispositivos MOSFET (transistor de efeito de campo metal-óxido-semicondutor) de mais alta performance (e.g. freqüências de operação f>100 GHz). O sSi é obtido através do crescimento epitaxial de Si sobre um substrato de mesma estrutura cristalina, porém com parâmetro de rede diferente. Esta tese apresenta uma investigação detalhada de um novo método que possibilita a produção de camadas relaxadas de Si1xGex com espessuras inferiores a 300 nm, consideradas como a melhor alternativa tecnológica para a produção de sSi. Este método envolve a implantação de íons de He+ ou de Si+ em heteroestruturas pseudomórficas de Si1-xGex/Si(001) e tratamentos térmicos. Foram estudados os efeitos dos diversos parâmetros experimentais de implantação e tratamentos térmicos sobre o processo de relaxação estrutural, utilizando-se heteroestruturas pseudomórficas de Si1-xGex/Si(001) crescidas via deposição de vapor químico, com distintas concentrações de Ge (0,19x 0,29) e com espessuras entre 70 e 425 nm. Com base no presente estudo foi possível identificar diversos mecanismos atômicos que influenciam o processo de relaxação estrutural das camadas de Si1-xGex/Si(001). O processo de relaxação é discutido em termos de um mecanismo complexo que envolve formação, propagação e interação de discordâncias a partir de defeitos introduzidos pela implantação. No caso das implantações de He, por exemplo, descobrimos que podem ocorrer perdas de He durante as implantações e que este efeito influencia negativamente a relaxação de camadas finas. Além disso, também demonstramos que os melhores resultados são obtidos para energias e fluências de implantação que resultam na formação de bolhas planas localizadas no substrato de Si a uma distância da interface equivalente a uma vez a espessura da camada de SiGe. O grau de relaxação satura em 50% para camadas de SiGe com espessura 100 nm. Este resultado é discutido em termos da energia elástica acumulada na camada de SiGe e da retenção de He. No caso de implantações de Si, discutimos a formação de defeitos tipo {311} e sua transformação térmica em discordâncias. Este estudo resultou numa visão abrangente dos principais fatores limitantes do processo, bem como na otimização dos valores de parâmetros experimentais para a produção de camadas de SiGe com alto grau de relaxação e com baixa densidade de defeitos.
|
6 |
Nanoestruturas luminescentes de Ge e Sn em camadas de SiO/sub 2/ implantadas com íonsLopes, João Marcelo Jordão January 2005 (has links)
Neste trabalho estudam-se as propriedades de nanoestruturas de Ge e Sn formadas em amostras de SiO2/Si(100) através dos processos de implantação iônica e tratamento térmico. A formação de nanocristais de Ge foi investigada em função de tratamentos térmicos em ambiente de N2. Os resultados obtidos foram correlacionados com as propriedades de luminescência das amostras, sendo feita uma discussão sobre os mecanismos atômicos envolvidos no processo de crescimento dos nanocristais de Ge, bem como seus efeitos na criação de centros luminescentes no interior da camada de SiO2, que são responsáveis por intensas bandas de fotoluminescência (PL) nas regiões espectrais do azul-violeta (≈ 3,2 eV) e ultravioleta (≈ 4,2 eV). Além disso, experimentos de irradiação com diferentes íons (He+, Si+, Kr++, Au+) foram realizados antes da implantação do Ge com o objetivo de estudar o efeito de memória que os danos criados pela irradiação apresentam sobre as propriedades estruturais e luminescentes das amostras de SiO2/Si(100) No estudo das amostras de SiO2/Si(100) implantadas com Sn, a síntese de nanopartículas de Sn foi estudada em função da temperatura e do ambiente de tratamento térmico (N2 e vácuo). De maneira pioneira mostrou-se que através da manipulação desses parâmetros é possível formar desde grandes nanocristais bi-fásicos de Sn (≈ 12 a 25 nm) em estruturas concêntricas com núcleo de β-Sn e camada externa de SnOx, até pequenas nanopartículas de Sn com diâmetros de ≈ 2 nm e uniformemente distribuídas ao longo da camada de SiO2. Além disso, observou-se que a evolução estrutural do sistema de nanopartículas de Sn influencia diretamente as características das emissões de PL azul-violeta e UV. Por fim, um outro aspecto das nanoestruturas de Sn foi estudado: a formação de um denso arranjo de ilhas epitaxiais de β-Sn na região de interface SiO2/Si. Este sistema de nano-ilhas, que cresce epitaxialmente, é uniformemente distribuído sobre a superfície do Si, apresentando uma pequena dispersão em tamanho e tendência a se auto-organizar. A criação desse sistema de nano-ilhas epitaxiais através da utilização da implantação iônica é um processo inédito, sendo discutida aqui com base nas propriedades de equilíbrio do sistema Sn-Si.
|
7 |
Pré-amorfização de silício por implantação iônica de estanho para formação de junções rasas tipo-pScherer, Elza Miranda January 2007 (has links)
Nesta dissertação estudamos a possibilidade de uso de implantação iônica de estanho para pré-amorfização do silício cristalino e sua aplicabilidade na tecnologia de fabricação de junções rasas. Foi estudada a amorfização de Si em doses altas (~ 1x1016 cm-2) de implantação de Sn. Nas pesquisas foram empregadas as técnicas de espectroscopia Mössbauer e de Retroespalhamento de Rutherford Canalizado (RBS/C). Mesmo para estas doses muito altas, foi observado 93% de substitucionalidade de Sn na rede cristalina de Si, após tratamento térmico, o que corresponde a duas ordens de grandeza a mais que a máxima solubilidade sólida. Doses médias (1x1012 – 3x1014 cm-2) de implantação de Sn foram usadas para encontrar a dose mínima de amorfização, que foi de 1x1014 cm-2, medida com RBS/C. Amostras pré-amorfizadas com implantação iônica de Sn e energias 120 keV e 240 keV foram posteriormente implantadas com BF2 + de 50 keV e dose 5x1014 cm-2 para obtenção de junção rasa tipo p+-n. Diferentes regimes de recozimento térmico rápido foram utilizados. Técnicas de espectroscopia de massa de íons secundários (SIMS) e medidas elétricas foram usadas para caracterização destas junções. O melhor resultado foi com pré-amorfização de Sn de 240 keV e recozimento de 900 ºC, 30s. A profundidade de junção foi de 115 nm e a resistência de folha de ~ 175 / . / The possibility of using ion implantation of tin to preamorphizing crystalline silicon and its applicability in the fabrication of shallow junctions is studied in this work. Initially we performed the preamorphization with high dose of implanted tin (~1x1016 cm-2). In the analysis of the implanted samples we used the techniques of Mössbauer Spectroscopy and Aligned Rutherford Backscattering (Channeling). Even for those high doses of implantation we observed 93% of substitutionality of tin in the crystalline lattice of silicon, after thermal annealing. This substitutionality is two orders of magnitude higher than the maximum solid solubility. Medium value doses (1x1012 – 3x1014 cm-2) of implanted tin were used in order to find the minimum dose for amorphization, which we found to be 1x1014 cm-2, measured with channeled RBS. Samples preamorphized with tin implanted at different energies, 120 keV and 240 keV, have been afterwards implanted with BF2 + of 50 keV and dose 5x1014 cm-2 to obtain shallow junction of type p+-n. Different processes of rapid thermal annealing have been used. Secondary Ions Mass Spectroscopy (SIMS) and electric measurements were used to characterize these junctions. The best result was obtained with preamorphization by tin at 240 keV and annealing at 900 oC, 30 s. The depth of the junction was 115 nm and sheet resistance of ~175 / .
|
8 |
Pré-amorfização de silício por implantação iônica de estanho para formação de junções rasas tipo-pScherer, Elza Miranda January 2007 (has links)
Nesta dissertação estudamos a possibilidade de uso de implantação iônica de estanho para pré-amorfização do silício cristalino e sua aplicabilidade na tecnologia de fabricação de junções rasas. Foi estudada a amorfização de Si em doses altas (~ 1x1016 cm-2) de implantação de Sn. Nas pesquisas foram empregadas as técnicas de espectroscopia Mössbauer e de Retroespalhamento de Rutherford Canalizado (RBS/C). Mesmo para estas doses muito altas, foi observado 93% de substitucionalidade de Sn na rede cristalina de Si, após tratamento térmico, o que corresponde a duas ordens de grandeza a mais que a máxima solubilidade sólida. Doses médias (1x1012 – 3x1014 cm-2) de implantação de Sn foram usadas para encontrar a dose mínima de amorfização, que foi de 1x1014 cm-2, medida com RBS/C. Amostras pré-amorfizadas com implantação iônica de Sn e energias 120 keV e 240 keV foram posteriormente implantadas com BF2 + de 50 keV e dose 5x1014 cm-2 para obtenção de junção rasa tipo p+-n. Diferentes regimes de recozimento térmico rápido foram utilizados. Técnicas de espectroscopia de massa de íons secundários (SIMS) e medidas elétricas foram usadas para caracterização destas junções. O melhor resultado foi com pré-amorfização de Sn de 240 keV e recozimento de 900 ºC, 30s. A profundidade de junção foi de 115 nm e a resistência de folha de ~ 175 / . / The possibility of using ion implantation of tin to preamorphizing crystalline silicon and its applicability in the fabrication of shallow junctions is studied in this work. Initially we performed the preamorphization with high dose of implanted tin (~1x1016 cm-2). In the analysis of the implanted samples we used the techniques of Mössbauer Spectroscopy and Aligned Rutherford Backscattering (Channeling). Even for those high doses of implantation we observed 93% of substitutionality of tin in the crystalline lattice of silicon, after thermal annealing. This substitutionality is two orders of magnitude higher than the maximum solid solubility. Medium value doses (1x1012 – 3x1014 cm-2) of implanted tin were used in order to find the minimum dose for amorphization, which we found to be 1x1014 cm-2, measured with channeled RBS. Samples preamorphized with tin implanted at different energies, 120 keV and 240 keV, have been afterwards implanted with BF2 + of 50 keV and dose 5x1014 cm-2 to obtain shallow junction of type p+-n. Different processes of rapid thermal annealing have been used. Secondary Ions Mass Spectroscopy (SIMS) and electric measurements were used to characterize these junctions. The best result was obtained with preamorphization by tin at 240 keV and annealing at 900 oC, 30 s. The depth of the junction was 115 nm and sheet resistance of ~175 / .
|
9 |
Pré-amorfização de silício por implantação iônica de estanho para formação de junções rasas tipo-pScherer, Elza Miranda January 2007 (has links)
Nesta dissertação estudamos a possibilidade de uso de implantação iônica de estanho para pré-amorfização do silício cristalino e sua aplicabilidade na tecnologia de fabricação de junções rasas. Foi estudada a amorfização de Si em doses altas (~ 1x1016 cm-2) de implantação de Sn. Nas pesquisas foram empregadas as técnicas de espectroscopia Mössbauer e de Retroespalhamento de Rutherford Canalizado (RBS/C). Mesmo para estas doses muito altas, foi observado 93% de substitucionalidade de Sn na rede cristalina de Si, após tratamento térmico, o que corresponde a duas ordens de grandeza a mais que a máxima solubilidade sólida. Doses médias (1x1012 – 3x1014 cm-2) de implantação de Sn foram usadas para encontrar a dose mínima de amorfização, que foi de 1x1014 cm-2, medida com RBS/C. Amostras pré-amorfizadas com implantação iônica de Sn e energias 120 keV e 240 keV foram posteriormente implantadas com BF2 + de 50 keV e dose 5x1014 cm-2 para obtenção de junção rasa tipo p+-n. Diferentes regimes de recozimento térmico rápido foram utilizados. Técnicas de espectroscopia de massa de íons secundários (SIMS) e medidas elétricas foram usadas para caracterização destas junções. O melhor resultado foi com pré-amorfização de Sn de 240 keV e recozimento de 900 ºC, 30s. A profundidade de junção foi de 115 nm e a resistência de folha de ~ 175 / . / The possibility of using ion implantation of tin to preamorphizing crystalline silicon and its applicability in the fabrication of shallow junctions is studied in this work. Initially we performed the preamorphization with high dose of implanted tin (~1x1016 cm-2). In the analysis of the implanted samples we used the techniques of Mössbauer Spectroscopy and Aligned Rutherford Backscattering (Channeling). Even for those high doses of implantation we observed 93% of substitutionality of tin in the crystalline lattice of silicon, after thermal annealing. This substitutionality is two orders of magnitude higher than the maximum solid solubility. Medium value doses (1x1012 – 3x1014 cm-2) of implanted tin were used in order to find the minimum dose for amorphization, which we found to be 1x1014 cm-2, measured with channeled RBS. Samples preamorphized with tin implanted at different energies, 120 keV and 240 keV, have been afterwards implanted with BF2 + of 50 keV and dose 5x1014 cm-2 to obtain shallow junction of type p+-n. Different processes of rapid thermal annealing have been used. Secondary Ions Mass Spectroscopy (SIMS) and electric measurements were used to characterize these junctions. The best result was obtained with preamorphization by tin at 240 keV and annealing at 900 oC, 30 s. The depth of the junction was 115 nm and sheet resistance of ~175 / .
|
10 |
Efeitos da implantação de ar e da irradiação com íons de Au+ sobre a formação de precipitados em aço AISI 316L utilizado como revestimento de combustível nuclearOyarzabal, Ítalo Martins January 2017 (has links)
Materiais expostos à irradiação de nêutrons geralmente apresentam degradação em suas propriedades físicas. Este é um problema importante para a tecnologia de reatores nucleares, pois influencia na segurança operacional e na vida útil de componentes estruturais. As mudanças na microestrutura resultam dos deslocamentos atômicos e da incorporação de produtos de fissão, principalmente gases inertes, produzidos pela reação de nêutrons com elementos dos materiais estruturais do reator. Esse trabalho apresenta resultados de uma investigação dos efeitos da irradiação no crescimento de bolhas de argônio (Ar) e sua influência no desenvolvimento de transição de fases induzidas por irradiação. Foram utilizadas amostras de um aço inoxidável AISI 316L na condição solubilizada como material de estudo e feixes de íons energéticos para simular a irradiação de nêutrons e produtos gerados pela fissão nuclear. Esse método alternativo é vantajoso de duas formas: evita a ativação das amostras irradiadas e permite a acumulação em poucas horas de uma quantidade de danos que levaria anos para ser atingida em um reator nuclear. Lâminas finas de aço AISI 316L foram polidas mecanicamente e solubilizadas para relaxar o estresse mecânico causado pelo processo de polimento e solubilizar o conteúdo de carbono. Tais amostras foram implantadas com íons de Ar acelerados a diferentes energias, de modo a formar uma distribuição planar com a concentração, e novamente tratadas termicamente para formar nano-aglomerados contendo vacâncias e átomos de Ar (i.e. nano-bolhas). Conjuntos distintos de amostras (incluindo as amostras de controle sem Ar) foram então irradiadas a diferentes temperaturas (de 450 a 550°C) com íons de Au acelerados até 5 MeV e a uma fluência calculada para atingir um nível de danos de 20 e de 40 dpa na região contendo o Ar. As amostras foram então investigadas por microscopia eletrônica de transmissão (MET) usando a técnica de desbaste iônico para produzir amostras plan-view. Os resultados demonstram de maneira inédita que, nas condições de irradiação utilizadas, a precipitação de carbonetos de fases identificadas como MC e M23C6 ou M6C (sendo M um átomo metálico da liga) ocorre apenas nas amostras contendo Ar. Junto com as reações de precipitação, ocorre também o crescimento das bolhas de Ar, sendo que o tamanho dos precipitados e das bolhas depende tanto da temperatura como da dose de irradiação. O estudo deste fenômeno de precipitação abre novas perspectivas para a elucidação da formação de fases induzidas por irradiação, como discutido neste trabalho. / Materials exposed to neutron irradiation usually present degradation in their physical properties. This is an important problem for the nuclear reactors technology, because it has an influence over operational safety and lifetime of structural components. Microstructural changes result from atomic displacements and the incorporation of inert gases produced by reactions of neutrons with elements of structural materials of the reactor. This work reports results from an investigation of irradiation effects on the growth of argon (Ar) bubbles and their influence on the development of irradiation induced phase transitions. We use a stainless steel AISI 316L in a solution condition as a model case material and energetic ion beams to simulate the neutron irradiation and fission induced products. This alternative approach is advantageous in two ways: it avoids the activation of the irradiated samples and enables a damage accumulation in a matter of hours that would take many years to be reached in a nuclear reactor. Thin AISI 316L stainless steel foils were mechanically polished and thermally treated in order to relax the stress from the polishing process and solubilize all content of carbon. These samples were implanted with Ar ions accelerated at different energies in order to form a planar concentration distribution and then annealed again to form small nano-clusters containing vacancies and Ar atoms (i.e. nano-bubbles). Distinct sets of samples (including control ones without Ar) were then irradiated at several temperatures (from 450 to 550 °C) with Au ions accelerated at 5 MeV and to a fluence calculated to reach a damage level of 20 and 40 dpa at the region containing the Ar plateau. These samples were investigated by transmission electron microscopy using plan-view specimens prepared by ion milling. The results demonstrate, in an unprecedented way, with the irradiation conditions utilized, precipitation of a second phase, identified as MC and M23C6 or M6C carbides, takes place only in samples containing Ar. Along with the precipitation reactions, there are also Ar bubbles growing. The size of precipitates and bubbles depends on the sample temperature and irradiation dose. The study of this precipitation phenomenon open new perspectives to elucidate the formation of induced radiation phases, as discussed in this work.
|
Page generated in 0.084 seconds