• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 11
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The presence of in-channel beaver impoundments in Rocky Mountain streams:implications for downstream food webs

2014 September 1900 (has links)
North American beavers (Castor canadensis) build dams in stream channels, thus creating impoundments that flood surrounding riparian areas. Due to the widely circulating global pool of mercury in the atmosphere, mercury is deposited onto the landscape both near and far from point sources, including areas occupied by beavers. The organic form of mercury, methylmercury, is a potent neurotoxin with potential to cause harm to both humans and wildlife due to its ability to biomagnify up food chains. Recently flooded areas, such as those resulting from beaver impoundments, create ideal environments for the methylation of mercury. These impoundments can release methylmercury to downstream food webs where there is potential for it to be transferred to higher trophic level organisms. Beaver impoundments can also boost productivity in aquatic systems, so increases in mercury may be accompanied by an increase in nutrients and algal and invertebrate biomass. The findings here describe increased concentrations of methylmercury in water, algae, and invertebrates downstream from in-channel beaver dams in the southern Canadian Rockies. There was, however, no significant increase in nutrients or algal and invertebrate biomass downstream from impoundments. An examination of trophic transfer of mercury in these stream systems reveals that uptake is enhanced at low concentrations. The uptake pathway from water to algae is especially important but is attenuated in higher trophic levels due to a small relative difference in trophic level between predators and prey. The overall rate of trophic transfer in these systems falls within the low end of the typical range, and low baseline concentrations mean that methylmercury is not biomagnifying to dangerous levels in these low-productivity mountain systems. Beavers can provide important ecosystem services such as improving landscape heterogeneity, creation of new habitat for invertebrates and fish and improved angling opportunities, but they also enhance mercury export. Therefore, in systems that are mercury-sensitive such as those with low pH or long-lived, slow-growing predatory fish species, beaver influence should be considered as an important source of methylmercury.
2

Has the Redesign of Columbia Lake Improved Water Quality in Laurel Creek?

Yu, Han January 2008 (has links)
Stormwater impoundments are one of many types of best management practices (BMP) designed and implemented to regulate water quantity and improve the quality of runoff from urban areas. Studies of water quality in urban impoundments have indicated that conventional designs are however, not very effective at removing solids and associated pollutants. Accordingly, many urban impoundments are being re-designed to improve downstream water quality. However, few studies have systematically monitored and quantified post-design water quality improvements of urban impoundments. This thesis examines changes in the water quality performance of an urban impoundment (Columbia Lake) in Waterloo, Ontario resulting from redesign of the lake for the pre-design period (2003 and 2004) and the post-design period (2006 and 2007). To achieve this goal, four years of water quality data collected at the inlet and outlet of Columbia Lake as part of the Laurel Creek Monitoring Program was measured. Water chemistry parameters included total phosphorus (TP), soluble reactive phosphorus (SRP), suspended solids (SS), dissolved oxygen (DO), pH and total dissolved solids (TDS). Inlet and outlet discharge (Q) were measured to determine the water retention time in the lake. Concentrations and loads of TP and SS for the post-design period (2006 and 2007) were compared to those for the pre-design period (2003 and 2004). During the pre-design period (2003 and 2004), inflow TP concentrations ranged from 18 to 372 µg L-1 with an average (mean ± standard error) of 56±7 µg L-1, while outflow TP concentrations ranged from 37 to 266 µg L-1 with an average of 116±6 µg L-1. Post-design TP concentrations ranged from 10 to 124 µg L-1 with an average of 53±5 µg L-1 and from 14 to 147 µg L-1 with an average of 44±3 µg L-1 at the inflow and outflow, respectively. Pre-design SS concentrations ranged from 1.8 to 168.5 mg L-1 with a mean of 19.0±3.2 mg L-1 and from 4.0 to 194.7 mg L-1 with a mean of 66.6±4.7 mg L-1 at the inflow and outflow, respectively. Post-design SS concentrations varied from < 0.1 to 25.8 mg L-1 with an average of 8.5±0.8 mg L-1 and from < 0.1 to 42.5 mg L-1 with an average of 14.5±0.8 mg L-1 at the inflow and outflow, respectively. Sedimentation/resuspension dominated the TP and SS transfer via Columbia Lake. Pre-design TP loads (log-transformed) strongly correlated with SS loads at the inflow and outflow (r = 0.661 and 0.777, p = 0.0001). These parameters were more strongly correlated during the post-design period (r = 0.794 and 0.915, r = 0.0001), which indicates that particulate P (PP) was a dominant fraction of TP and that the release of dissolved phosphorus (DP) from bottom sediments was considerably decreased following the redesign. No significant difference was observed between inflow and outflow SRP concentrations. Discharge strongly affected TP and SS loads at the inflow and outflow during the pre- and post-design periods (r > 0.79, p = 0.000 for all). After the redesign of Columbia Lake, the average net internal P loading rate decreased from 198% to 22% for TP. The primary factor influencing the observed decreased post-design TP and SS outputs was the removal of sediment from the lake. Bottom sediment removal and changes to the lake bathymetry reduced sediment resuspension and P desorption, which decreased the average net internal SS loading rate from 828% to 154%. The Columbia Lake Water Quality Model developed by Stantec Consulting Ltd. (2004) underestimated the post-design outflow TP and SS concentrations mainly because it did not include terms that account for factors such as bioturbation, wave induced resuspension and biological activity.
3

Has the Redesign of Columbia Lake Improved Water Quality in Laurel Creek?

Yu, Han January 2008 (has links)
Stormwater impoundments are one of many types of best management practices (BMP) designed and implemented to regulate water quantity and improve the quality of runoff from urban areas. Studies of water quality in urban impoundments have indicated that conventional designs are however, not very effective at removing solids and associated pollutants. Accordingly, many urban impoundments are being re-designed to improve downstream water quality. However, few studies have systematically monitored and quantified post-design water quality improvements of urban impoundments. This thesis examines changes in the water quality performance of an urban impoundment (Columbia Lake) in Waterloo, Ontario resulting from redesign of the lake for the pre-design period (2003 and 2004) and the post-design period (2006 and 2007). To achieve this goal, four years of water quality data collected at the inlet and outlet of Columbia Lake as part of the Laurel Creek Monitoring Program was measured. Water chemistry parameters included total phosphorus (TP), soluble reactive phosphorus (SRP), suspended solids (SS), dissolved oxygen (DO), pH and total dissolved solids (TDS). Inlet and outlet discharge (Q) were measured to determine the water retention time in the lake. Concentrations and loads of TP and SS for the post-design period (2006 and 2007) were compared to those for the pre-design period (2003 and 2004). During the pre-design period (2003 and 2004), inflow TP concentrations ranged from 18 to 372 µg L-1 with an average (mean ± standard error) of 56±7 µg L-1, while outflow TP concentrations ranged from 37 to 266 µg L-1 with an average of 116±6 µg L-1. Post-design TP concentrations ranged from 10 to 124 µg L-1 with an average of 53±5 µg L-1 and from 14 to 147 µg L-1 with an average of 44±3 µg L-1 at the inflow and outflow, respectively. Pre-design SS concentrations ranged from 1.8 to 168.5 mg L-1 with a mean of 19.0±3.2 mg L-1 and from 4.0 to 194.7 mg L-1 with a mean of 66.6±4.7 mg L-1 at the inflow and outflow, respectively. Post-design SS concentrations varied from < 0.1 to 25.8 mg L-1 with an average of 8.5±0.8 mg L-1 and from < 0.1 to 42.5 mg L-1 with an average of 14.5±0.8 mg L-1 at the inflow and outflow, respectively. Sedimentation/resuspension dominated the TP and SS transfer via Columbia Lake. Pre-design TP loads (log-transformed) strongly correlated with SS loads at the inflow and outflow (r = 0.661 and 0.777, p = 0.0001). These parameters were more strongly correlated during the post-design period (r = 0.794 and 0.915, r = 0.0001), which indicates that particulate P (PP) was a dominant fraction of TP and that the release of dissolved phosphorus (DP) from bottom sediments was considerably decreased following the redesign. No significant difference was observed between inflow and outflow SRP concentrations. Discharge strongly affected TP and SS loads at the inflow and outflow during the pre- and post-design periods (r > 0.79, p = 0.000 for all). After the redesign of Columbia Lake, the average net internal P loading rate decreased from 198% to 22% for TP. The primary factor influencing the observed decreased post-design TP and SS outputs was the removal of sediment from the lake. Bottom sediment removal and changes to the lake bathymetry reduced sediment resuspension and P desorption, which decreased the average net internal SS loading rate from 828% to 154%. The Columbia Lake Water Quality Model developed by Stantec Consulting Ltd. (2004) underestimated the post-design outflow TP and SS concentrations mainly because it did not include terms that account for factors such as bioturbation, wave induced resuspension and biological activity.
4

Impacts of Aquatic Vegetation Management on the Ecology of Small Impoundments

Knight, Trevor J. 16 January 2010 (has links)
Aquatic vegetation management and fisheries management are inseparable, however conflicts are often perceived between the two. We investigated the impact of biological, chemical, and no vegetation control on the ecology of private impoundments stocked with largemouth bass and bluegill sunfish. The primary purpose of this study was to determine if aquatic vegetation management had significant impact on pond ecology. A secondary purpose of this study was to collect data for a separate descriptive study on the impact of vegetation management on plankton populations. Nine 0.10 acre ponds were obtained at the Aquaculture Research and Teaching Facility of Texas A and M University in the fall of 2005. Southern naiad (Najas guadalupenis) was transplanted into each pond at a stocking rate of one ton per surface acre. One of three treatments was then randomly assigned to each pond. The treatments were replicated three times and consisted of: an herbicide treatment using Reward and Cutrine, a triploid grass carp treatment, and a control treatment. Fathead minnows (Pimephales promelas), bluegills (Lepomis macrochirus), and largemouth bass (Micropterus salmoides) fingerlings were stocked in each pond. The treatments were initiated on May 31, 2006. Prior to the initiation of the treatments, sampling of each pond occurred for hardness, total phosphorus, nitrite, nitrate, ammonia-nitrogen, dissolved oxygen, turbidity, pH, and temperature. Macroinvertebrate samples were collected from each pond. Post-treatment sampling was conducted on the herbicide treatment and the control at day 2, day 7, day 14, day 28, and monthly thereafter. Posttreatment sampling on the triploid grass carp treatment was conducted at day 14, day 28, and monthly thereafter. One-way ANOVA tests were conducted on the data using SPSS 15.0, and multivariate analysis was conducted using CANOCO software. Significant differences between treatments were found for the parameters turbidity, macrophyte percent coverage, macroinvertebrate species richness, largemouth bass mean weight, and largemouth mean length. Herbicide application and grass scarp stocking significantly decreased the percent coverage of macrophytes in the ponds. Turbidity was significantly increased in the herbicide and grass carp treatments. Largemouth bass mean weight and length were significantly higher in the grass carp ponds. No significant relationships were found in the multivariate analysis; however, there appeared to be several trends within the multivariate analysis that provide insight into potential ecological relationships between the various parameters. The results of this study provide great insight into the impact that various aquatic vegetation management strategies have on the ecology of small impoundments and will help private pond owners and managers conduct better pond management when dealing with aquatic vegetation problems.
5

Western limb tailings reclamation project

Van den Berg, Mader J. January 2004 (has links)
Thesis (M.L.(Prof.))--University of Pretoria, 2004. / Includes summary. Includes bibliographical references.
6

Land use, sediment supply and channel response of southwest Ohio watersheds

Rakovan, Monica Tsang 28 November 2011 (has links)
No description available.
7

Engineering Characteristics of Coal Combustion Residuals and a Reconstitution Technique for Triaxial Samples

Lacour, Nicholas Alexander 05 July 2012 (has links)
Traditionally, coal combustion residuals (CCRs) were disposed of with little engineering consideration. Initially, common practice was to use a wet-scrubbing system to cut down on emissions of fly ash from the combustion facilities, where the ash materials were sluiced to the disposal facility and allowed to sediment out, forming deep deposits of meta-stable ash. As the life of the disposal facility progressed, new phases of the impoundment were constructed, often using the upstream method. One such facility experienced a massive slope stability failure on December 22, 2008 in Kingston, Tennessee, releasing millions of cubic yards of impounded ash material into the Watts Bar reservoir and damaging surrounding property. This failure led to the call for new federal regulations on CCR disposal areas and led coal burning facilities to seek out geotechnical consultants to review and help in the future design of their disposal facilities. CCRs are not a natural soil, nor a material that many geotechnical engineers deal with on a regular basis, so this thesis focuses on compiling engineering characteristics of CCRs determined by different researchers, while also reviewing current engineering practice when dealing with CCR disposal facilities. Since the majority of coal-burning facilities used the sluicing method to dispose of CCRs at one point, many times it is desirable to construct new "dry-disposal" phases above the retired ash impoundments; since in-situ sampling of CCRs is difficult and likely produces highly disturbed samples, a sample reconstitution technique is also presented for use in triaxial testing of surface impounded CCRs. / Master of Science
8

PORE PRESSURE MEASUREMENT INSTRUMENTATION RESPONSE TO BLASTING

Larson-Robl, Kylie M. 01 January 2016 (has links)
Coal mine impoundment failures have been well documented to occur due to an increase in excess pore pressure from sustained monotonic loads. Very few failures have ever occurred from dynamic loading events, such as earthquakes, and research has been done regarding the stability of these impoundment structures under such natural seismic loading events. To date no failures or damage have been reported from dynamic loading events caused by near-by production blasting, however little research has been done considering these conditions. Taking into account that current environmental restrictions oblige to increase the capacity of coal impoundments, thus increasing the hazard of such structures, it is necessary to evaluate the effects of near-by blasting on the stability of the impoundment structures. To study the behavior of excess pore pressure under blasting conditions, scaled simulations of blasting events were set inside a controlled sand tank. Simulated blasts were duplicated in both saturated and unsaturated conditions. Explosive charges were detonated within the sand tank at various distances to simulate different scaled distances. Information was collected from geophones for dry and saturated scenarios and additionally from pressure sensors under saturated conditions to assess the behavior of the material under blasting conditions.
9

Riparian Vegetation Distribution along the Ume River : Predicted responses of riparian plants to environmental flow modifications in run-of-river impoundments

Berglund, Louise January 2014 (has links)
River environments are complex and dynamic ecosystems, and provide valuable ecosystem services such as clean water. The species rich riparian vegetation performs many important ecosystem functions such as reducing erosion and filter inputs from upland areas. Regulated flow regimes have decreased riparian plant species richness, cover and plant performance. To restore the integrity of riparian ecosystems, mitigation measures such as re-regulation of water-level regimes toward more natural seasonal fluctuations may be needed. The aim of this study was to assess potential responses of riparian plants to changes in water-level regulation in run-of-river impoundments to better match natural flow regimes. The elevational extent of plant species on riverbanks of two run-of-river impoundments in the Ume River were surveyed and their probability of occurrence along the gradient of inundation duration was modelled and compared to their distribution in the free-flowing Vindel River. Most species showed similar tolerance to flooding in the Ume and Vindel Rivers. Changes in elevational extent in response to three simulated environmental flow regimes were predicted by using the relationship between plant occurrence and inundation duration. A simulated spring flood and low water levels during the latter part of the growing season is predicted to result in the largest increase in elevational extent, with increases of 70-80% for several riparian species. However, only 47% of the riverbanks along run-of-river impoundments in the Ume River is deemed to be suitable for plant establishment, since many riverbanks are steep and devoid of fine-grained substrate as a result of erosion. / Älvmiljöer utgör komplexa och dynamiska ekosystem som tillhandahåller värdefulla ekosystemtjänster så som rent vatten. Den artrika strandvegetation bidrar till många viktiga ekosystemsfunktioner som närings- och giftupptag och till minskad erosion. Vattenregleringen med förändrade flödesregimer har minskat artrikedom, täckningsgrad och tillväxt av strandväxter. För restaurering av strandekosystemen kan omreglering till mer naturliga säsongsvariationer i vattenståndet vara nödvändigt. Den här studien syftade till att förutsäga hur utbredningen av strandväxter längs stränder i vattenkraftsmagasin potentiellt skulle förändras vid användande av miljöanpassade flöden för att mer likna naturliga flödesregimer i outbyggda älvar. Jag undersökte växternas utbredning i höjdled på stranden längs två magasin i Umeälven och beräknade sannolikheten för varje arts förekomst längs strandens översvämningsgradient. Av de arter som förekom i både Umeälven och den närliggande, outbyggda Vindelälven jämfördes växternas utbredningsgränser i respektive älv. De flesta arterna uppvisade liknande översvämningstolerans i Umeälven och Vindelälven. För att förutsäga förändringar i utbredning som respons på tre olika simulerade miljöanpassade vattenståndsregimer, jämfördes arternas översvämningstolerans vid nuvarade vattenstånd med simulerade vattenståndsregimer. En simulerad vårflod och lågt vattenstånd under sensommaren förväntas ge de största responserna i artutbredning med ökningar på 70-80% för ett flertal strandväxter. Endast 47% av älvstränderna i magasinen i Umeälven bedöms vara lämpliga för växtetablering eftersom stora delar av strandsträckorna är branta och saknar finkornigt substrat till följd av erosion.
10

Linking watershed-scale features and processes to carbon, nitrogen, and phosphorus fluxes

Knoll, Lesley Beth 16 November 2011 (has links)
No description available.

Page generated in 0.0512 seconds