• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Murine Models of Intestinal Anastomoses

Williams, David L., Browder, I W. 01 January 2003 (has links)
No description available.
2

Migration of neural crest cells in normal ICR mouse and mutant dominant megacolon mouse embryos.

January 2001 (has links)
Mok Wing Fai Simon. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 91-97). / Abstracts in English and Chinese. / Abstract (English) --- p.i / Abstract (Chinese) --- p.iii / Acknowledgements --- p.iv / Table of content --- p.v / List of Figures --- p.viii / List of Tables --- p.x / Chapter CHAPTER ONE: --- INTRODUCTION / Chapter 1.1 --- Origin of the Neural Crest Cells / Chapter 1.1.1 --- Formation of the Neural Tube --- p.1 / Chapter 1.1.2 --- The Neural Crest cells and the Vagal Neural Crest Cells --- p.2 / Chapter 1.1.3 --- The migration profiles of Neural Crest Cells Originated from the Axial level other than Vagal Neural Crest --- p.4 / Chapter 1.1.4 --- Development of the Gastrointestinal Tract and the Enteric Nervous System --- p.5 / Chapter CHAPTER TWO: --- MIGRATION OF NEURAL CREST CELLS IN NORMAL ICR AND DOM MUTANT MOUSE EMBRYOS / Chapter 2.1 --- Introduction --- p.27 / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Pregnant mice --- p.39 / Chapter 2.2.2 --- The Handling Medium --- p.39 / Chapter 2.2.3 --- The Culture Medium --- p.40 / Chapter 2.2.4 --- Preparation of Wheat Germ Agglutinin-Gold Conjugates (WGA-Au) --- p.42 / Chapter 2.2.5 --- "Preparation of 1,´1ة-dioctadecyl-´3ة 3,3 '3,3 226}0ة-tetramethyl indocarbocyanine perchlorate (Di-I) " --- p.43 / Chapter 2.2.6 --- Preparation of Carnoýةs Solution --- p.43 / Chapter 2.2.7 --- Preparation of Paraformaldehyde --- p.43 / Chapter 2.2.8 --- Pregnont Dominant Megacolon (Dom) Mice --- p.44 / Chapter 2.2.9 --- DNA Extraction for Genotyping of Dom Embryos --- p.45 / Chapter 2.2.10 --- Primers Used in PCR for Genotyping of Dom Embryos --- p.45 / Chapter 2.2.11 --- PCR Reagent System --- p.46 / Chapter 2.2.12 --- 10XTBE --- p.46 / Chapter 2.3 --- Methods / Chapter 2.3.1 --- Isolation of Embryos from Pregnant Mice --- p.47 / Chapter 2.3.2 --- In situ labeling of exogenous dye --- p.48 / Chapter 2.3.3 --- Whole Embryo Culture --- p.49 / Chapter 2.3.4 --- Morphological Examination of Cultured Embryos --- p.49 / Chapter 2.3.5 --- Histological Examination of Cultured embryos --- p.50 / Chapter 2.3.6 --- Genotyping of Dom F1 Generation --- p.51 / Chapter 2.3.7 --- Genotyping of Dom Embryos by PCR --- p.52 / Chapter 2.3.8 --- Gel Electrophoresis --- p.52 / Chapter 2.3.9 --- Counting of WGA-Au Labelled Cells --- p.53 / Chapter 2.4 --- Results / Chapter 2.4.1 --- Genotyping --- p.54 / Chapter 2.4.2 --- Examination on Gross morphology of Control and Experimental Embryos --- p.54 / Chapter 2.4.3 --- Morphological Examination of DOM Mutant Embryo after culture --- p.57 / Chapter 2.4.4 --- Initial Stage of Vagal and Trunk Neural Crest Cells Migration in Mouse Embryos --- p.62 / Chapter 2.4.5 --- Initial Stage of Vagal and Trunk Neural Crest Cells Migration in DOM Embryos --- p.64 / Chapter 2.4.6 --- Distribution of Labelled Cells in ICR Embryos after WGA-Au Labelling --- p.65 / Chapter 2.4.7 --- Distribution of WGA-Au Labelled Cells in DOM Embryos --- p.69 / Chapter CHAPTER THREE: --- DISCUSSION / Chapter 3.1 --- Development of embryos in vitro --- p.78 / Chapter 3.2 --- Comparison of the Two Exogenous Dyes --- p.80 / Chapter 3.3 --- Migration Pathway of the Vagal and Trunk Neural Crest Cells --- p.81 / Chapter 3.4 --- Counting of Labelled Cells in DOM Embryos --- p.83 / Chapter 3.5 --- Initial Stage of Vagal and Trunk Neural Crest Cells Migration of Different Genotypes of the DOM Embryos --- p.84 / Chapter 3.6 --- Differences in Distribution of WGA-Au Labelled Cells in Different Genotypes of DOM Embryos --- p.85 / Chapter CHAPTER FOUR: --- CONCLUSION --- p.88 / REFERENCES --- p.91 / "FIGURES, LEGEND TABLE AND APPENDIX"
3

Ontogeny of Adenosine Deaminase in the Mouse Decidua and Placenta: Immunolocalization and Embryo Transfer Studies

Knudsen, T B., Blackburn, M. R., Chinsky, J. M., Airhart, M J., Kellems, R. E. 01 January 1991 (has links)
This study has determined the cellular site of adenosine deaminase (ADA) expression in the mouse during development from Days 5 through 13 (day vaginal plug was found = Day 0) of gestation. Developmental expression of ADA progressed in two overlapping phases defined genetically (maternal vs. embryonal) and according to region (decidual vs. placental). In the first phase, ADA enzyme activity increased almost 200-fold in the antimesometrial region (decidua capsularis + giant trophoblast cells) from Days 6 through 9 of gestation but remained low in the mesometrial region. Immunohistochemical staining revealed a major localization of ADA to the secondary decidua. In the second phase, ADA activity increased several-fold in the placenta (labyrinth + basal zones) from Days 9 through 13 of gestation but remained low in the embryo proper. Immunohistochemical staining revealed a major localization of ADA to secondary giant cells, spongiotrophoblast, and labyrinthine trophoblast. Regression of decidua capsularis and growth of the spongiotrophoblast population accounted for an antimesometrial to placental shift in both ADA enzyme activity and a 40-kDa immunoreactive protein band. To verify a shift from maternal to fetal expression, studies were performed with two strains of mice (ICR, Eday) homozygous for a different ADA isozyme (ADA-A, ADA-B). Blastocysts homozygous for Adab were transferred to the uterus of pseudopregnant female recipients homozygous for Adaa. The isozymic pattern in chimeric embryo-decidual units analyzed at Days 7, 9, 11, and 13 revealed a predominance of maternal-encoded enzyme at Days 7 through 11 of gestation and a shift to fetal-encoded enzyme by Day 13. Thus, maternal expression of ADA in the antimesometrial decidua may play a role during establishment of the embryo in the uterine environment, whereas fetal expression of ADA in the trophoblast might be important to placentation.

Page generated in 0.0365 seconds