Spelling suggestions: "subject:"incompressible navierstokes"" "subject:"incompressible avierstokes""
1 |
An Immersed Interface Method for the Incompressible Navier-Stokes EquationsLe, Duc-Vinh, Khoo, Boo Cheong, Peraire, Jaime 01 1900 (has links)
We present an immersed interface algorithm for the incompressible Navier Stokes equations. The interface is represented by cubic splines which are interpolated through a set of Lagrangian control points. The position of the control points is implicitly updated using the fluid velocity. The forces that the interface exerts on the fluid are computed from the constitutive relation of the interface and are applied to the fluid through jumps in the pressure and jumps in the derivatives of pressure and velocity. A projection method is used to time advance the Navier-Stokes equations on a uniform cartesian mesh. The Poisson-like equations required for the implicit solution of the diffusive and pressure terms are solved using a fast Fourier transform algorithm. The position of the interface is updated implicitly using a quasi-Newton method (BFGS) within each timestep. Several examples are presented to illustrate the flexibility of the presented approach. / Singapore-MIT Alliance (SMA)
|
2 |
Divergence-free B-spline discretizations for viscous incompressible flowsEvans, John Andrews 31 January 2012 (has links)
The incompressible Navier-Stokes equations are among the most important partial differential systems arising from classical physics. They are utilized to model a wide range of fluids, from water moving around a naval vessel to blood flowing through the arteries of the cardiovascular system. Furthermore, the secrets of turbulence are widely believed to be locked within the Navier-Stokes equations. Despite the enormous applicability of the Navier-Stokes equations, the underlying behavior of solutions to the partial differential system remains little understood. Indeed, one of the Clay Mathematics Institute's famed Millenium Prize Problems involves the establishment of existence and smoothness results for Navier-Stokes solutions, and turbulence is considered, in the words of famous physicist Richard Feynman, to be "the last great unsolved problem of classical physics."
Numerical simulation has proven to be a very useful tool in the analysis of the Navier-Stokes equations. Simulation of incompressible flows now plays a major role in the industrial design of automobiles and naval ships, and simulation has even been utilized to study the Navier-Stokes existence and smoothness problem. In spite of these successes, state-of-the-art incompressible flow solvers are not without their drawbacks. For example, standard turbulence models which rely on the existence of an energy spectrum often fail in non-trivial settings such as rotating flows. More concerning is the fact that most numerical methods do not respect the fundamental geometric properties of the Navier-Stokes equations. These methods only satisfy the incompressibility constraint in an approximate sense. While this may seem practically harmless, conservative semi-discretizations are typically guaranteed to balance energy if and only if incompressibility is satisfied pointwise. This is especially alarming as both momentum conservation and energy balance play a critical role in flow structure development. Moreover, energy balance is inherently linked to the numerical stability of a method.
In this dissertation, novel B-spline discretizations for the generalized Stokes and Navier-Stokes equations are developed. The cornerstone of this development is the construction of smooth generalizations of Raviart-Thomas-Nedelec elements based on the new theory of isogeometric discrete differential forms. The discretizations are (at least) patch-wise continuous and hence can be directly utilized in the Galerkin solution of viscous flows for single-patch configurations. When applied to incompressible flows, the discretizations produce pointwise divergence-free velocity fields. This results in methods which properly balance both momentum and energy at the semi-discrete level. In the presence of multi-patch geometries or no-slip walls, the discontinuous Galerkin framework can be invoked to enforce tangential continuity without upsetting the conservation and stability properties of the method across patch boundaries. This also allows our method to default to a compatible discretization of Darcy or Euler flow in the limit of vanishing viscosity. These attributes in conjunction with the local stability properties and resolution power of B-splines make these discretizations an attractive candidate for reliable numerical simulation of viscous incompressible flows. / text
|
3 |
A finite element formulation and analysis for advection-diffusion and incompressible Navier-Stokes equationsLiu, Hon Ho January 1993 (has links)
No description available.
|
4 |
Approximation and interpolation employing divergence-free radial basis functions with applicationsLowitzsch, Svenja 30 September 2004 (has links)
Approximation and interpolation employing radial basis functions has
found important applications since the early 1980's in areas such
as signal processing, medical imaging, as well as neural networks.
Several applications demand that certain physical properties be
fulfilled, such as a function being divergence free. No such class
of radial basis functions that reflects these physical properties
was known until 1994, when Narcowich and Ward introduced a family of
matrix-valued radial basis functions that are divergence free. They
also obtained error bounds and stability estimates for interpolation
by means of these functions. These divergence-free functions are
very smooth, and have unbounded support. In this thesis we
introduce a new class of matrix-valued radial basis functions that are
divergence free as well as compactly supported. This leads to the
possibility of applying fast solvers for inverting interpolation
matrices, as these matrices are not only symmetric and positive
definite, but also sparse because of this compact support. We develop
error bounds and stability estimates which hold for a broad class of
functions. We conclude with applications to the numerical solution of
the Navier-Stokes equation for certain incompressible fluid flows.
|
5 |
Exponential Integrators for the Incompressible Navier-Stokes EquationsNewman, Christopher K. 05 November 2003 (has links)
We provide an algorithm and analysis of a high order projection scheme for time integration of the incompressible Navier-Stokes equations (NSE). The method is based on a projection onto the subspace of divergence-free (incompressible) functions interleaved with a Krylov-based exponential time integration (KBEI). These time integration methods provide a high order accurate, stable approach with many of the advantages of explicit methods, and can reduce the computational resources over conventional methods. The method is scalable in the sense that the computational costs grow linearly with problem size.
Exponential integrators, used typically to solve systems of ODEs, utilize matrix vector products of the exponential of the Jacobian on a vector. For large systems, this product can be approximated efficiently by Krylov subspace methods. However, in contrast to explicit methods, KBEIs are not restricted by the time step. While implicit methods require a solution of a linear system with the Jacobian, KBEIs only require matrix vector products of the Jacobian. Furthermore, these methods are based on linearization, so there is no non-linear system solve at each time step.
Differential-algebraic equations (DAEs) are ordinary differential equations (ODEs) subject to algebraic constraints. The discretized NSE constitute a system of DAEs, where the incompressibility condition is the algebraic constraint. Exponential integrators can be extended to DAEs with linear constraints imposed via a projection onto the constraint manifold. This results in a projected ODE that is integrated by a KBEI. In this approach, the Krylov subspace satisfies the constraint, hence the solution at the advanced time step automatically satisfies the constraint as well. For the NSE, the projection onto the constraint is typically achieved by a projection induced by the L2 inner product. We examine this L2 projection and an H1 projection induced by the H1 semi-inner product. The H1 projection has an advantage over the L2 projection in that it retains tangential Dirichlet boundary conditions for the flow. Both the H1 and L2 projections are solutions to saddle point problems that are efficiently solved by a preconditioned Uzawa algorithm. / Ph. D.
|
6 |
Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes / Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometriesMontagnier, Julien 01 July 2010 (has links)
La prévention des risques industriels nécessite de simuler la dispersion turbulente de polluants. Cependant, les outils majoritairement utilisés à ce jour ne permettent pas de traiter les champs proches dans le cas de géométries complexes, et il est nécessaire d'utiliser les outils de CFD (“ Computational Fluid Dynamics ”) plus adaptés, mais plus coûteux. Afin de simuler les écoulements atmosphériques avec dispersion de polluants, les modèles CFD doivent modéliser correctement d'une part, les effets de flottabilité, et d'autre part les effets de la turbulence. Plusieurs approches existent, notamment dans la prise en compte des effets de flottabilité et la modélisation de la turbulence, et nécessitent des méthodes numériques adaptées aux spécificités mathématiques de chacune d'entre elles, ainsi que des schémas numériques précis pour ne pas polluer la modélisation. Une formulation d'ordre élevé en volumes finis, sur maillages non structurés, parallélisée, est proposée pour simuler les écoulements atmosphériques avec dispersion de polluants. L'utilisation de schémas d'ordre élevé doit permettre d'une part de réduire le nombre de cellules et diminuer les temps de simulation pour atteindre une précision donnée, et d'autre part de mieux contrôler la viscosité numérique des schémas en vue de simulations LES (Large Eddy Simulation), pour lesquelles la viscosité numérique des schémas peut masquer les effets de la modélisation. Deux schémas d'ordre élevé ont été étudiés et implémentés dans un solveur 3D Navier Stokes incompressible sur des maillages volumes finis non structurés. Nous avons développé un premier schéma d'ordre élevé, correspondant à un schéma Padé volumes finis, et nous avons étendu le schéma de reconstruction polynomiale de Carpentier (2000) aux écoulements incompressibles. Les propriétés numériques des différents schémas implémentés dans le même code de calcul sont étudiées sur différents cas tests bi-dimensionnels (calcul de flux convectifs et diffusifs sur une solution a-priori, convection d'une tâche gaussienne, décroissance d'un vortex de Taylor et cavité entraînée) et tri-dimensionnel (écoulement autour d'un obstacle cubique). Une attention particulière a été portée à l'étude de la précision et du traitement des conditions limites. L'implémentation proposée du schéma polynomial permet d'approcher, pour un maillage identique, les temps de simulation obtenus avec un schéma décentré classique d'ordre 2, mais avec une précision supérieure. Le schéma compact donne la meilleure précision. En utilisant une méthode de Jacobi sans calcul implicite de la matrice pour calculer le gradient, le temps de simulation devient intéressant uniquement lorsque la précision requise est importante. Une alternative est la résolution du système linéaire par une méthode multigrille algébrique. Cette méthode diminue considérablement le temps de calcul du gradient et le schéma Padé devient performant même pour des maillages grossiers. Enfin, pour réduire les temps de simulation, la parallélisation des schémas d'ordre élevé est réalisée par une décomposition en sous domaines. L'assemblage des flux s'effectue naturellement et différents solveurs proposés par les librairies PETSC et HYPRE (solveur multigrille algébrique et méthode de Krylov préconditionnée) permettent de résoudre les systèmes linéaires issus de notre problème. / The prevention of industrial risks requires simulating turbulent dispersion of pollutants. However, the tools mostly used so far do not allow near fields treated in the case of complex geometries, and it is necessary to utilize the tools of CFD (Computational Fluid Dynamics ") more suitable but more expensive. To simulate atmospheric flows with dispersion of pollutants, the CFD models must correctly model the one hand, the effects of buoyancy, and secondly the effects of turbulence. Several approaches exist, including taking into account the effects of buoyancy and turbulence modeling, and require numerical methods adapted to the specific mathematics of each, and accurate numerical schemes to avoid pollution modeling. A formulation of high order finite volume on unstructured meshes, parallelized, is proposed to simulate the atmospheric flows with dispersion of pollutants. The use of high order schemes allow one hand to reduce the number of cells and decrease the simulation time to achieve a given accuracy, and secondly to better control the viscosity numerical schemes for simulation LES (Large Eddy Simulation), for which the numerical viscosity patterns may mask the effects of modeling. Two high-order schemes have been studied and implemented in a 3D Navier Stokes solver on unstructured mesh finite volume. We developed the first high-order scheme, corresponding to a Padé finite volume scheme, and we have extended the scheme of reconstruction polynomial Carpentier (2000) for incompressible flows. The numerical properties of the various schemes implemented in the same computer code are studied different two-dimensional test cases (calculation of diffusive and convective flow on a solution a priori, a task Gaussian convection, decay of a vortex of Taylor and driven cavity) and tri-dimensional (flow past an obstacle cubic). Particular attention has been paid to the study of the accuracy and treatment of boundary conditions. The implementation of the polynomial allows to obtain quasi identical simulation time compared to a classical upwind scheme of order 2, but with higher accuracy. The compact layout gives the best accuracy. Using a Jacobi method without calculation implied matrix to calculate the gradient, the simulation time becomes interesting only when the required accuracy is important. An alternative is the resolution of linear system by an algebraic multigrid method. This method significantly reduces the computation time of the gradient and the Padé scheme is effective even for coarse meshes. Finally, to reduce simulation time, the parallelization schemes of high order is achieved by a decomposition into subdomains. The assembly flow occurs naturally and different solvers provided by PETSc libraries and HYORE (algebraic multigrid solver and preconditioned Krylov method) used to solve linear systems from our problem. The work was to identify and determine the parameters that lead to lowest time resolution simulation. Various tests of speed-up and scale-up were used to determine the most effective and optimal parameters for solving linear systems in parallel from our problem. The results of this work have been the subject of a communication in an international conference "Parallel CFD 2008" and an article submitted to "International Journal for Numerical Methods in Fluids" (Analysis of high-order finite volume schemes for the incompressible Navier Stokes equations)
|
7 |
gNek: A GPU Accelerated Incompressible Navier Stokes SolverStilwell, Nichole 16 September 2013 (has links)
This thesis presents a GPU accelerated implementation of a high order splitting scheme with a spectral element discretization for the incompressible Navier Stokes (INS) equations.
While others have implemented this scheme on clusters of processors using the Nek5000 code, to my knowledge this thesis is the first to explore its performance on the GPU.
This work implements several of the Nek5000 algorithms using OpenCL kernels that efficiently utilize the GPU memory architecture, and achieve massively parallel on chip computations.
These rapid computations have the potential to significantly enhance computational fluid dynamics (CFD) simulations that arise in areas such as weather modeling or aircraft design procedures.
I present convergence results for several test cases including channel, shear, Kovasznay, and lid-driven cavity flow problems, which achieve the proven convergence results.
|
8 |
High-performance implementation of H(div)-conforming elements for incompressible flowsWik, Niklas January 2022 (has links)
In this thesis, evaluation of H(div)-conforming finite elements is implemented in a high-performance setting and used to solve the incompressible Navier-Stokes equation, obtaining an exactly point-wise divergence-free velocity field. In particular, the anisotropic Raviart-Thomas tensor-product polynomial space is considered, where the finite element operators are evaluated with quadrature in a matrix-free fashion using sum-factorization on tensor-product meshes. The implementation includes evaluation over elements and faces in two- and three-dimensional space, supporting non-conforming meshes with hanging nodes, and using the contravariant Piola transformation to preserve normal components on element boundaries. In terms of throughput, the implementation achieves up to an order of magnitude faster evaluation of finite element operators compared to a matrix-based evaluation. Correctness is demonstrated with optimal convergence rates for various polynomial degrees, as well as exactly divergence-free solutions for the velocity field.
|
9 |
Uniqueness results for viscous incompressible fluidsBarker, Tobias January 2017 (has links)
First, we provide new classes of initial data, that grant short time uniqueness of the associated weak Leray-Hopf solutions of the three dimensional Navier-Stokes equations. The main novelty here is the establishment of certain continuity properties near the initial time, for weak Leray-Hopf solutions with initial data in supercritical Besov spaces. The techniques used here build upon related ideas of Calderón. Secondly, we prove local regularity up to the at part of the boundary, for certain classes of solutions to the Navier-Stokes equations, provided that the velocity field belongs to L<sub>∞</sub>(-1; 0; L<sup>3, β</sup>(B(1) ⋂ ℝ<sup>3</sup> <sub>+</sub>)) with 3 ≤ β < ∞. What enables us to build upon the work of Escauriaza, Seregin and Šverák [27] and Seregin [100] is the establishment of new scale-invariant estimates, new estimates for the pressure near the boundary and a convenient new ϵ-regularity criterion. Third, we show that if a weak Leray-Hopf solution in ℝ<sup>3</sup> <sub>+</sub>×]0,∞[ has a finite blow-up time T, then necessarily lim<sub>t↑T</sub>||v(·, t)||<sub>L<sup>3,β</sup>(ℝ<sup>3</sup> <sub>+</sub>)</sub> = ∞ with 3 < β < ∞. The proof hinges on a rescaling procedure from Seregin's work [106], a new stability result for singular points on the boundary, suitable a priori estimates and a Liouville type theorem for parabolic operators developed by Escauriaza, Seregin and Šverák [27]. Finally, we investigate a notion of global-in-time solutions to the Navier- Stokes equations in ℝ<sup>3</sup>, with solenoidal initial data in the critical Besov space ?<sup>-1/4</sup><sub>4,∞</sub>(ℝ<sup>3</sup>), which has certain continuity properties with respect to weak* convergence of the initial data. Such properties are motivated by the strategy used by Seregin [106] to show that if a weak Leray-Hopf solution in ℝ<sup>3</sup>×]0,∞[ has a finite blow-up time T, then necessarily lim<sub>t↑T</sub> ||v(·, t)||<sub>L<sub>3</sub>(ℝ<sup>3</sup>)</sub> = ∞. We prove new decomposition results for Besov spaces, which are key in the conception and existence theory of such solutions.
|
10 |
Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexesMontagnier, Julien 12 July 2010 (has links) (PDF)
La prévention des risques industriels nécessite de simuler la dispersion turbulente de polluants. Cependant, les outils majoritairement utilisés à ce jour ne permettent pas de traiter les champs proches dans le cas de géométries complexes, et il est nécessaire d'utiliser les outils de CFD (“ Computational Fluid Dynamics ”) plus adaptés, mais plus coûteux. Afin de simuler les écoulements atmosphériques avec dispersion de polluants, les modèles CFD doivent modéliser correctement d'une part, les effets de flottabilité, et d'autre part les effets de la turbulence. Plusieurs approches existent, notamment dans la prise en compte des effets de flottabilité et la modélisation de la turbulence, et nécessitent des méthodes numériques adaptées aux spécificités mathématiques de chacune d'entre elles, ainsi que des schémas numériques précis pour ne pas polluer la modélisation. Une formulation d'ordre élevé en volumes finis, sur maillages non structurés, parallélisée, est proposée pour simuler les écoulements atmosphériques avec dispersion de polluants. L'utilisation de schémas d'ordre élevé doit permettre d'une part de réduire le nombre de cellules et diminuer les temps de simulation pour atteindre une précision donnée, et d'autre part de mieux contrôler la viscosité numérique des schémas en vue de simulations LES (Large Eddy Simulation), pour lesquelles la viscosité numérique des schémas peut masquer les effets de la modélisation. Deux schémas d'ordre élevé ont été étudiés et implémentés dans un solveur 3D Navier Stokes incompressible sur des maillages volumes finis non structurés. Nous avons développé un premier schéma d'ordre élevé, correspondant à un schéma Padé volumes finis, et nous avons étendu le schéma de reconstruction polynomiale de Carpentier (2000) aux écoulements incompressibles. Les propriétés numériques des différents schémas implémentés dans le même code de calcul sont étudiées sur différents cas tests bi-dimensionnels (calcul de flux convectifs et diffusifs sur une solution a-priori, convection d'une tâche gaussienne, décroissance d'un vortex de Taylor et cavité entraînée) et tri-dimensionnel (écoulement autour d'un obstacle cubique). Une attention particulière a été portée à l'étude de la précision et du traitement des conditions limites. L'implémentation proposée du schéma polynomial permet d'approcher, pour un maillage identique, les temps de simulation obtenus avec un schéma décentré classique d'ordre 2, mais avec une précision supérieure. Le schéma compact donne la meilleure précision. En utilisant une méthode de Jacobi sans calcul implicite de la matrice pour calculer le gradient, le temps de simulation devient intéressant uniquement lorsque la précision requise est importante. Une alternative est la résolution du système linéaire par une méthode multigrille algébrique. Cette méthode diminue considérablement le temps de calcul du gradient et le schéma Padé devient performant même pour des maillages grossiers. Enfin, pour réduire les temps de simulation, la parallélisation des schémas d'ordre élevé est réalisée par une décomposition en sous domaines. L'assemblage des flux s'effectue naturellement et différents solveurs proposés par les librairies PETSC et HYPRE (solveur multigrille algébrique et méthode de Krylov préconditionnée) permettent de résoudre les systèmes linéaires issus de notre problème. Le travail réalisé a consisté à identifier et déterminer les paramètres de résolution qui conduisent aux temps de simulation les plus faibles. Différents tests de speed-up et de scale-up ont permis de déterminer la méthode la plus efficace et ses paramètres optimaux pour la résolution en parallèle des systèmes linéaires issus de notre problème. Les résultats de ce travail ont fait l'objet d'une communication dans un congrès international “ parallel CFD juin 2008 ” et d'un article soumis à “ International Journal for Numerical Methods in Fluids ” (Analysis of high-order finite volume schemes for the incompressible Navier Stokes equations)
|
Page generated in 0.0809 seconds