• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of indexing strategy-query term combination on retrieval effectiveness in a Swedish full text database

Ahlgren, Per January 2004 (has links)
This thesis deals with Swedish full text retrieval and the problem of morphological variation of query terms in thedocument database. The study is an information retrieval experiment with a test collection. While no Swedish testcollection was available, such a collection was constructed. It consists of a document database containing 161,336news articles, and 52 topics with four-graded (0, 1, 2, 3) relevance assessments. The effects of indexing strategy-query term combination on retrieval effectiveness were studied. Three of five testedmethods involved indexing strategies that used conflation, in the form of normalization. Further, two of these threecombinations used indexing strategies that employed compound splitting. Normalization and compound splittingwere performed by SWETWOL, a morphological analyzer for the Swedish language. A fourth combinationattempted to group related terms by right hand truncation of query terms. A search expert performed the truncation.The four combinations were compared to each other and to a baseline combination, where no attempt was made tocounteract the problem of morphological variation of query terms in the document database. Two situations were examined in the evaluation: the binary relevance situation and the multiple degree relevancesituation. With regard to the binary relevance situation, where the three (positive) relevance degrees (1, 2, 3) weremerged into one, and where precision was used as evaluation measure, the four alternative combinationsoutperformed the baseline. The best performing combination was the combination that used truncation. Thiscombination performed better than or equal to a median precision value for 41 of the 52 topics. One reason for therelatively good performance of the truncation combination was the capacity of its queries to retrieve different partsof speech. In the multiple degree relevance situation, where the three (positive) relevance degrees were retained, retrievaleffectiveness was taken to be the accumulated gain the user receives by examining the retrieval result up to givenpositions. The evaluation measure used was nDCG (normalized cumulated gain with discount). This measurecredits retrieval methods that (1) rank highly relevant documents higher than less relevant ones, and (2) rankrelevant (of any degree) documents high. With respect to (2), nDCG involves a discount component: a discount withregard to the relevance score of a relevant (of any degree) document is performed, and this discount is greater andgreater, the higher position the document has in the ranked list of retrieved documents. In the multiple degree relevance situation, the five combinations were evaluated under four different user scenarios,where each scenario simulated a certain user type. Again, the four alternative combinations outperformed thebaseline, for each user scenario. The truncation combination had the best performance under each user scenario.This outcome agreed with the performance result in the binary relevance situation. However, there were alsodifferences between the two relevance situations. For 25 percent of the topics and with regard to one of the four userscenarios, the set of best performing combinations in the binary relevance situation was disjunct from the set of bestperforming combinations in the multiple degree relevance situation. The user scenario in question was such thatalmost all importance was placed on highly relevant documents, and the discount was sharp. The main conclusion of the thesis is that normalization and right hand truncation (performed by a search expert)enhanced retrieval effectiveness in comparison to the baseline, irrespective of which of the two relevance situationswe consider. Further, the three indexing strategy-query term combinations based on normalization were almost asgood as the combination that involves truncation. This holds for both relevance situations. / <p>QC 20150813</p>
2

Efficient techniques for large-scale Web data management / Techniques efficaces de gestion de données Web à grande échelle

Camacho Rodriguez, Jesus 25 September 2014 (has links)
Le développement récent des offres commerciales autour du cloud computing a fortement influé sur la recherche et le développement des plateformes de distribution numérique. Les fournisseurs du cloud offrent une infrastructure de distribution extensible qui peut être utilisée pour le stockage et le traitement des données.En parallèle avec le développement des plates-formes de cloud computing, les modèles de programmation qui parallélisent de manière transparente l'exécution des tâches gourmandes en données sur des machines standards ont suscité un intérêt considérable, à commencer par le modèle MapReduce très connu aujourd'hui puis par d'autres frameworks plus récents et complets. Puisque ces modèles sont de plus en plus utilisés pour exprimer les tâches de traitement de données analytiques, la nécessité se fait ressentir dans l'utilisation des langages de haut niveau qui facilitent la charge de l'écriture des requêtes complexes pour ces systèmes.Cette thèse porte sur des modèles et techniques d'optimisation pour le traitement efficace de grandes masses de données du Web sur des infrastructures à grande échelle. Plus particulièrement, nous étudions la performance et le coût d'exploitation des services de cloud computing pour construire des entrepôts de données Web ainsi que la parallélisation et l'optimisation des langages de requêtes conçus sur mesure selon les données déclaratives du Web.Tout d'abord, nous présentons AMADA, une architecture d'entreposage de données Web à grande échelle dans les plateformes commerciales de cloud computing. AMADA opère comme logiciel en tant que service, permettant aux utilisateurs de télécharger, stocker et interroger de grands volumes de données Web. Sachant que les utilisateurs du cloud prennent en charge les coûts monétaires directement liés à leur consommation de ressources, notre objectif n'est pas seulement la minimisation du temps d'exécution des requêtes, mais aussi la minimisation des coûts financiers associés aux traitements de données. Plus précisément, nous étudions l'applicabilité de plusieurs stratégies d'indexation de contenus et nous montrons qu'elles permettent non seulement de réduire le temps d'exécution des requêtes mais aussi, et surtout, de diminuer les coûts monétaires liés à l'exploitation de l'entrepôt basé sur le cloud.Ensuite, nous étudions la parallélisation efficace de l'exécution de requêtes complexes sur des documents XML mis en œuvre au sein de notre système PAXQuery. Nous fournissons de nouveaux algorithmes montrant comment traduire ces requêtes dans des plans exprimés par le modèle de programmation PACT (PArallelization ConTracts). Ces plans sont ensuite optimisés et exécutés en parallèle par le système Stratosphere. Nous démontrons l'efficacité et l'extensibilité de notre approche à travers des expérimentations sur des centaines de Go de données XML.Enfin, nous présentons une nouvelle approche pour l'identification et la réutilisation des sous-expressions communes qui surviennent dans les scripts Pig Latin. Notre algorithme, nommé PigReuse, agit sur les représentations algébriques des scripts Pig Latin, identifie les possibilités de fusion des sous-expressions, sélectionne les meilleurs à exécuter en fonction du coût et fusionne d'autres expressions équivalentes pour partager leurs résultats. Nous apportons plusieurs extensions à l'algorithme afin d’améliorer sa performance. Nos résultats expérimentaux démontrent l'efficacité et la rapidité de nos algorithmes basés sur la réutilisation et des stratégies d'optimisation. / The recent development of commercial cloud computing environments has strongly impacted research and development in distributed software platforms. Cloud providers offer a distributed, shared-nothing infrastructure, that may be used for data storage and processing.In parallel with the development of cloud platforms, programming models that seamlessly parallelize the execution of data-intensive tasks over large clusters of commodity machines have received significant attention, starting with the MapReduce model very well known by now, and continuing through other novel and more expressive frameworks. As these models are increasingly used to express analytical-style data processing tasks, the need for higher-level languages that ease the burden of writing complex queries for these systems arises.This thesis investigates the efficient management of Web data on large-scale infrastructures. In particular, we study the performance and cost of exploiting cloud services to build Web data warehouses, and the parallelization and optimization of query languages that are tailored towards querying Web data declaratively.First, we present AMADA, an architecture for warehousing large-scale Web data in commercial cloud platforms. AMADA operates in a Software as a Service (SaaS) approach, allowing users to upload, store, and query large volumes of Web data. Since cloud users support monetary costs directly connected to their consumption of resources, our focus is not only on query performance from an execution time perspective, but also on the monetary costs associated to this processing. In particular, we study the applicability of several content indexing strategies, and show that they lead not only to reducing query evaluation time, but also, importantly, to reducing the monetary costs associated with the exploitation of the cloud-based warehouse.Second, we consider the efficient parallelization of the execution of complex queries over XML documents, implemented within our system PAXQuery. We provide novel algorithms showing how to translate such queries into plans expressed in the PArallelization ConTracts (PACT) programming model. These plans are then optimized and executed in parallel by the Stratosphere system. We demonstrate the efficiency and scalability of our approach through experiments on hundreds of GB of XML data.Finally, we present a novel approach for identifying and reusing common subexpressions occurring in Pig Latin scripts. In particular, we lay the foundation of our reuse-based algorithms by formalizing the semantics of the Pig Latin query language with extended nested relational algebra for bags. Our algorithm, named PigReuse, operates on the algebraic representations of Pig Latin scripts, identifies subexpression merging opportunities, selects the best ones to execute based on a cost function, and merges other equivalent expressions to share its result. We bring several extensions to the algorithm to improve its performance. Our experiment results demonstrate the efficiency and effectiveness of our reuse-based algorithms and optimization strategies.
3

Scalable algorithms for cloud-based Semantic Web data management / Algorithmes passant à l’échelle pour la gestion de données du Web sémantique sur les platformes cloud

Zampetakis, Stamatis 21 September 2015 (has links)
Afin de construire des systèmes intelligents, où les machines sont capables de raisonner exactement comme les humains, les données avec sémantique sont une exigence majeure. Ce besoin a conduit à l’apparition du Web sémantique, qui propose des technologies standards pour représenter et interroger les données avec sémantique. RDF est le modèle répandu destiné à décrire de façon formelle les ressources Web, et SPARQL est le langage de requête qui permet de rechercher, d’ajouter, de modifier ou de supprimer des données RDF. Être capable de stocker et de rechercher des données avec sémantique a engendré le développement des nombreux systèmes de gestion des données RDF.L’évolution rapide du Web sémantique a provoqué le passage de systèmes de gestion des données centralisées à ceux distribués. Les premiers systèmes étaient fondés sur les architectures pair-à-pair et client-serveur, alors que récemment l’attention se porte sur le cloud computing.Les environnements de cloud computing ont fortement impacté la recherche et développement dans les systèmes distribués. Les fournisseurs de cloud offrent des infrastructures distribuées autonomes pouvant être utilisées pour le stockage et le traitement des données. Les principales caractéristiques du cloud computing impliquent l’évolutivité́, la tolérance aux pannes et l’allocation élastique des ressources informatiques et de stockage en fonction des besoins des utilisateurs.Cette thèse étudie la conception et la mise en œuvre d’algorithmes et de systèmes passant à l’échelle pour la gestion des données du Web sémantique sur des platformes cloud. Plus particulièrement, nous étudions la performance et le coût d’exploitation des services de cloud computing pour construire des entrepôts de données du Web sémantique, ainsi que l’optimisation de requêtes SPARQL pour les cadres massivement parallèles.Tout d’abord, nous introduisons les concepts de base concernant le Web sémantique et les principaux composants des systèmes fondés sur le cloud. En outre, nous présentons un aperçu des systèmes de gestion des données RDF (centralisés et distribués), en mettant l’accent sur les concepts critiques de stockage, d’indexation, d’optimisation des requêtes et d’infrastructure.Ensuite, nous présentons AMADA, une architecture de gestion de données RDF utilisant les infrastructures de cloud public. Nous adoptons le modèle de logiciel en tant que service (software as a service - SaaS), où la plateforme réside dans le cloud et des APIs appropriées sont mises à disposition des utilisateurs, afin qu’ils soient capables de stocker et de récupérer des données RDF. Nous explorons diverses stratégies de stockage et d’interrogation, et nous étudions leurs avantages et inconvénients au regard de la performance et du coût monétaire, qui est une nouvelle dimension importante à considérer dans les services de cloud public.Enfin, nous présentons CliqueSquare, un système distribué de gestion des données RDF basé sur Hadoop. CliqueSquare intègre un nouvel algorithme d’optimisation qui est capable de produire des plans massivement parallèles pour des requêtes SPARQL. Nous présentons une famille d’algorithmes d’optimisation, s’appuyant sur les équijointures n- aires pour générer des plans plats, et nous comparons leur capacité à trouver les plans les plus plats possibles. Inspirés par des techniques de partitionnement et d’indexation existantes, nous présentons une stratégie de stockage générique appropriée au stockage de données RDF dans HDFS (Hadoop Distributed File System). Nos résultats expérimentaux valident l’effectivité et l’efficacité de l’algorithme d’optimisation démontrant également la performance globale du système. / In order to build smart systems, where machines are able to reason exactly like humans, data with semantics is a major requirement. This need led to the advent of the Semantic Web, proposing standard ways for representing and querying data with semantics. RDF is the prevalent data model used to describe web resources, and SPARQL is the query language that allows expressing queries over RDF data. Being able to store and query data with semantics triggered the development of many RDF data management systems. The rapid evolution of the Semantic Web provoked the shift from centralized data management systems to distributed ones. The first systems to appear relied on P2P and client-server architectures, while recently the focus moved to cloud computing.Cloud computing environments have strongly impacted research and development in distributed software platforms. Cloud providers offer distributed, shared-nothing infrastructures that may be used for data storage and processing. The main features of cloud computing involve scalability, fault-tolerance, and elastic allocation of computing and storage resources following the needs of the users.This thesis investigates the design and implementation of scalable algorithms and systems for cloud-based Semantic Web data management. In particular, we study the performance and cost of exploiting commercial cloud infrastructures to build Semantic Web data repositories, and the optimization of SPARQL queries for massively parallel frameworks.First, we introduce the basic concepts around Semantic Web and the main components and frameworks interacting in massively parallel cloud-based systems. In addition, we provide an extended overview of existing RDF data management systems in the centralized and distributed settings, emphasizing on the critical concepts of storage, indexing, query optimization, and infrastructure. Second, we present AMADA, an architecture for RDF data management using public cloud infrastructures. We follow the Software as a Service (SaaS) model, where the complete platform is running in the cloud and appropriate APIs are provided to the end-users for storing and retrieving RDF data. We explore various storage and querying strategies revealing pros and cons with respect to performance and also to monetary cost, which is a important new dimension to consider in public cloud services. Finally, we present CliqueSquare, a distributed RDF data management system built on top of Hadoop, incorporating a novel optimization algorithm that is able to produce massively parallel plans for SPARQL queries. We present a family of optimization algorithms, relying on n-ary (star) equality joins to build flat plans, and compare their ability to find the flattest possibles. Inspired by existing partitioning and indexing techniques we present a generic storage strategy suitable for storing RDF data in HDFS (Hadoop’s Distributed File System). Our experimental results validate the efficiency and effectiveness of the optimization algorithm demonstrating also the overall performance of the system.

Page generated in 0.1096 seconds