• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Enumeration of all Connected Induced Subgraphs of a Large Undirected Graph

Maxwell, Sean T. 21 February 2014 (has links)
No description available.
2

Vertex partition of sparse graphs / Partition des sommets de graphes peu denses

Dross, François 27 June 2018 (has links)
Le Théorème des Quatre Couleurs, conjecturé en 1852 et prouvé en 1976, est à l'origine de l'étude des partitions des sommets de graphes peu denses. Il affirme que toute carte plane peut être coloriée avec au plus quatre couleurs différentes, de telle manière que deux régions qui partagent une frontière aient des couleurs différentes. Énoncé en terme de théorie des graphes, cela veut dire que tout graphe planaire, c'est à dire tout graphe qui peut être représenté dans le plan sans que deux arêtes ne se croisent, peut voir son ensemble de sommets partitionné en quatre ensembles tels que chacun de ces ensembles ne contient pas les deux extrémités d'une même arête. Une telle partition est appelée une coloration propre en quatre couleurs. Dans cette thèse, on s'intéresse à l'étude de la structure des graphes peu denses, selon différentes notions de densité. D'une part, on étudie les graphes planaires sans petits cycles, et d'autre part les graphes dont tous les sous-graphes ont un degré moyen peu élevé. Pour ces classes de graphes, on recherche tout d'abord le plus petit nombre de sommets à retirer pour obtenir une forêt, c'est à dire un graphe sans cycles. Cela peut être vu comme une partition des sommets du graphe en un ensemble induisant une forêt et un ensemble de sommets contenant au plus une fraction donnée des sommets du graphe. La motivation première de cette étude est une conjecture d'Albertson et Berman (1976) comme quoi tout graphe planaire admettrait une telle partition où la forêt contient au moins la moitié des sommets du graphe. Dans un second temps, on s'intéresse aux partitions des sommets de ces graphes en deux ensembles, tels que les sous-graphes induits par ces deux ensembles ont des propriétés particulières. Par exemple, ces sous-graphes peuvent être des graphes sans arêtes, des forêts, des graphes de degré borné, ou des graphes dont les composantes connexes ont un nombre borné de sommets. Ces partitions des sommets sont des extensions de la notion de coloration propre de graphe.On montre, pour différentes classes de graphes peu denses, que tous les graphes de ces classes admettent de telles partitions. On s'intéresse également aux aspect algorithmiques de la construction de telles partitions. / The study of vertex partitions of planar graphs was initiated by the Four Colour Theorem, which was conjectured in 1852, and proven in 1976. According to that theorem, one can colour the regions of any planar map by using only four colours, in such a way that any two regions sharing a border have distinct colours. In terms of graph theory, it can be reformulated this way: the vertex set of every planar graph, i.e. every graph that can be represented in the plane such that edges do not cross, can be partitioned into four sets such that no edge has its two endpoints in the same set. Such a partition is called a proper colouring of the graph.In this thesis, we look into the structure of sparse graphs, according to several notions of sparsity. On the one hand, we consider planar graphs with no small cycles, and on the other hand, we consider the graphs where every subgraph has bounded average degree.For these classes of graphs, we first look for the smallest number of vertices that can be removed such that the remaining graph is a forest, that is a graph with no cycles. That can be seen as a partition of the vertices of the graph into a set inducing a forest and a set with a bounded fraction of the vertices of the graph. The main motivation for this study is a the Albertson and Berman Conjecture (1976), which states that every planar graph admits an induced forest containing at least one half of its vertices.We also look into vertex partition of sparse graphs into two sets both inducing a subgraph with some specific prescribed properties. Exemples of such properties can be that they have no edges, or no cycles, that they have bounded degree, or that they have bounded components. These vertex partitions generalise the notion of proper colouring. We show, for different classes of sparse graphs, that every graph in those classes have some specific vertex partition. We also look into algorithmic aspects of these partitions.
3

Degree Sequences, Forcibly Chordal Graphs, and Combinatorial Proof Systems

Altomare, Christian J. January 2009 (has links)
No description available.
4

Proper connection number of graphs

Doan, Trung Duy 16 August 2018 (has links)
The concept of \emph{proper connection number} of graphs is an extension of proper colouring and is motivated by rainbow connection number of graphs. Let $G$ be an edge-coloured graph. Andrews et al.\cite{Andrews2016} and, independently, Borozan et al.\cite{Borozan2012} introduced the concept of proper connection number as follows: A coloured path $P$ in an edge-coloured graph $G$ is called a \emph{properly coloured path} or more simple \emph{proper path} if two any consecutive edges receive different colours. An edge-coloured graph $G$ is called a \emph{properly connected graph} if every pair of vertices is connected by a proper path. The \emph{proper connection number}, denoted by $pc(G)$, of a connected graph $G$ is the smallest number of colours that are needed in order to make $G$ properly connected. Let $k\geq2$ be an integer. If every two vertices of an edge-coloured graph $G$ are connected by at least $k$ proper paths, then $G$ is said to be a \emph{properly $k$-connected graph}. The \emph{proper $k$-connection number} $pc_k(G)$, introduced by Borozan et al. \cite{Borozan2012}, is the smallest number of colours that are needed in order to make $G$ a properly $k$-connected graph. The aims of this dissertation are to study the proper connection number and the proper 2-connection number of several classes of connected graphs. All the main results are contained in Chapter 4, Chapter 5 and Chapter 6. Since every 2-connected graph has proper connection number at most 3 by Borozan et al. \cite{Borozan2012} and the proper connection number of a connected graph $G$ equals 1 if and only if $G$ is a complete graph by the authors in \cite{Andrews2016, Borozan2012}, our motivation is to characterize 2-connected graphs which have proper connection number 2. First of all, we disprove Conjecture 3 in \cite{Borozan2012} by constructing classes of 2-connected graphs with minimum degree $\delta(G)\geq3$ that have proper connection number 3. Furthermore, we study sufficient conditions in terms of the ratio between the minimum degree and the order of a 2-connected graph $G$ implying that $G$ has proper connection number 2. These results are presented in Chapter 4 of the dissertation. In Chapter 5, we study proper connection number at most 2 of connected graphs in the terms of connectivity and forbidden induced subgraphs $S_{i,j,k}$, where $i,j,k$ are three integers and $0\leq i\leq j\leq k$ (where $S_{i,j,k}$ is the graph consisting of three paths with $i,j$ and $k$ edges having an end-vertex in common). Recently, there are not so many results on the proper $k$-connection number $pc_k(G)$, where $k\geq2$ is an integer. Hence, in Chapter 6, we consider the proper 2-connection number of several classes of connected graphs. We prove a new upper bound for $pc_2(G)$ and determine several classes of connected graphs satisfying $pc_2(G)=2$. Among these are all graphs satisfying the Chv\'tal and Erd\'{o}s condition ($\alpha({G})\leq\kappa(G)$ with two exceptions). We also study the relationship between proper 2-connection number $pc_2(G)$ and proper connection number $pc(G)$ of the Cartesian product of two nontrivial connected graphs. In the last chapter of the dissertation, we propose some open problems of the proper connection number and the proper 2-connection number.

Page generated in 0.0704 seconds