Spelling suggestions: "subject:"conductance""
61 |
Non-local electrodynamics of superconducting wires: implications for flux noise and inductanceSenarath Yapa Arachchige, Pramodh Viduranga 22 December 2017 (has links)
The simplest model for superconductor electrodynamics are the London equations,
which treats the impact of electromagnetic fields on the current density as a localized
phenomenon. However, the charge carriers of superconductivity are quantum mechanical
objects, and their wavefunctions are delocalized within the superconductor,
leading to non-local effects. The Pippard equation is the generalization of London
electrodynamics which incorporates this intrinsic non-locality through the introduction
of a new superconducting characteristic length, \xi_0, called the Pippard coherence
length. When building nano-scale superconducting devices, the inclusion of the coherence
length into electrodynamics calculations becomes paramount. In this thesis, we
provide numerical calculations of various electrodynamic quantities of interest in the
non-local regime, and discuss their implications for building superconducting devices.
We place special emphasis on Superconducting QUantum Inteference Devices
(SQUIDs), and their usage as flux quantum bits (qubits) in quantum computation.
One of the main limitations of these flux qubits is the presence of intrinsic flux noise, which leads to decoherence of the qubits. Although the origin of this flux noise is not known, there is evidence that it is related to spin impurities within the superconducting
material. We present calculations which show that the flux noise in the
non-local regime is signi cantly different from the local case. We also demonstrate
that non-local electrodynamics greatly affect the self-inductance of the qubit. / Graduate
|
62 |
Contribution à la réalisation d'une micro-inductance planaire / Contribution to the realization of a planar micro-inductorAllassem, Désiré 26 November 2010 (has links)
Les récents progrès dans les télécommunications exigent de nouveaux composants pouvant fonctionner à des fréquences de plus en plus élevées et l’électronique d’une manière générale exige des composants de très bonne qualité. L’objectif principal de ce travail est la conception, la réalisation et la caractérisation d’une micro-inductance intégrée utilisant les propriétés d’une couche relativement épaisse de matériau magnétique. Les structures bobinées étant difficilement intégrables, une structure planaire a été retenue. Deux types de dispositifs ont été réalisés : une structure composée d’une spirale sur une couche de matériau magnétique et une autre constituée d’une spirale prise en sandwich entre deux couches de matériau magnétique. Les études réalisées par simulation montrent de très bons résultats confirmés par les caractérisations. Plusieurs essais de caractérisation hautes fréquences (à l’aide d’un analyseur vectoriel) et basses fréquences (à l’aide d’un LCRmètre) ont été réalisés. Les résultats montrent un gain en termes de valeur d’inductance d’un facteur de deux sur la structure une couche et un gain d’un facteur proche de la perméabilité du matériau pour une structure double couche. Par ailleurs, une technique de caractérisation "courant fort" utilisant un té de polarisation et une technique de détermination de la perméabilité du matériau magnétique utilisant la combinaison des résultats de mesure et de simulation ont été développées. L’intégration des composants passifs comme l’inductance à couche magnétique relativement épaisse est possible grâce à l’utilisation des techniques de la microélectronique et de micro-usinage / Recent advances in telecommunications require new components that can operate at high frequencies and now, electronic requires high quality components. The main purpose of this work is the design, micro-fabrication and characterization of a micro-integrated inductor using properties of a relatively thick layer of magnetic material. As coiled structures are difficult to integrate a planar structure was chosen. Two kinds of devices have been made: a device consisting of one spiral on a layer of magnetic material and another consisting of one spiral sandwiched between two layers of magnetic material. The simulation studies show very good results confirmed by characterizations. Several high frequencies (using a vector analyzer) and low frequencies (using a LCRmeter) characterizations were made. Results show that the inductance value is multiplied by two in the case of a structure with one layer of magnetic material and by a factor close to the permeability of magnetic material in the case of a double layer structure. In addition, a high current characterization technique using a bias tee and a technique for determining the permeability of the magnetic material using a combination of measurement results and simulation have been implemented. The integration of passive components such as inductor with relatively thick magnetic layers is made possible by the use of microelectronic and micro-machining techniques
|
63 |
Conception et réalisation de transformateurs intégrés pour les alimentations de faible puissance / Design and Realization of Integrated Transformers for Low Power DC-DC ConvertersSemard, Maxime 07 June 2018 (has links)
Le chapitre 1 introduit le sujet et son contexte. Les verrous sont identifiés.Le chapitre 2 fait l’état de l’art sur la topologie des enroulements constituants le transformateur.Les points forts et les points faibles des différentes topologies sont discutés. Les différents matériaux nécessaires à la réalisation de transformateurs (conducteur, magnétique et isolant) satisfaisant les exigences sur la haute température et la haute fréquence sont identifiés.Enfin, je présenterai la méthode de fabrication LTCC qui constitue une alternative à la technologie développée dans ce mémoire.Le chapitre 3 traite de la modélisation et de la conception des transformateurs en définissant la structure et ses degrés de libertés. L’utilisation des calculs analytiques et de simulations par la méthode des éléments finis permettent d’évaluer des transformateurs à enroulements entrelacés et à enroulements concentriques avec une bonne précision. Le chapitre 4 présente les procédés technologiques permettant la fabrication collective de transformateurs sur substrat magnétique. Il s’agit de l’isolation du substrat, de la croissance électrolytique des enroulements et de l’assemblage final du transformateur.Le chapitre 5 présente les méthodes de caractérisations de différentes propriétés du transformateur : résistance des enroulements en continu, inductances propres d’un enroulement et capacité d’isolement entre enroulements primaire et secondaire. Ces caractérisations permettent de confirmer les calculs analytiques et les hypothèses sur lesquelles ils reposent ainsi que les simulations magnétostatique et électrostatique par éléments finis.Le chapitre 6 permettra de conclure sur les travaux réalisés dans le cadre de cette thèse et d’ouvrir des perspectives pour des travaux futurs / Chapter 1 introduces the topic and its associated context. Locks are identified.Chapter 2 is reviewing state of the art of winding topologies. Their strengths and weaknesses are discussed. Then, materials required for transformers microfabrication (conductors, magnetic material and insulation material) satisfying both high temperature and high frequency criteria are identified. Finally, LTCC fabrication process, an alternative to process used here, is presented.Chapter 3 discuss modelisation and design of transformers by defining the structures and its degrees of freedom. Analytical expressions and finite element analysis allows evaluation of interleaved transformer and tapped transformer within a good accuracy.Chapter 4 present technological process involved in batch-processed fabrication of transformers onto magnetic substrate. Processes are substrate insulation, conductors electrolytic growth of windings and final assembly of transformers.Chapter 5 present characterization methods of several properties of the transformers such as DC winding resistance, self-inductances of windings and isolation capacitance between primary and secondary winding. These characterizations confirm analytical expressions and their underlying hypothesis as well as magnetostatic and electrostatic finite element analysis.Chapter 6 concludes on work achieved during this PhD thesis and opens to further perspectives
|
64 |
Kvantifikace nejistot měření metodou Monte Carlo / Quantification of measurement uncertainty using Monte CarloMareš, Jaroslav January 2013 (has links)
This master’s thesis is focused on evaluation of standard uncertanities of measurement by method GUM and Monte Carlo and theirs comparation. In first part of this thesis is made the theoretical analysis of evaluation of measurement uncertanities and proposal of methodology for evaluating uncertainties by Monte Carlo method. In the second part is described direct and indirect measuring of resistance, capacitance and inductance, including evaluation of standard uncertanities of those measurings by GUM and Monte Carlo methods. In the end of this thesis is made comparison of achieved results of spoken methods.
|
65 |
Circuit Level Reliability Considerations in Wide Bandgap Semiconductor DevicesDhakal, Shankar January 2018 (has links)
No description available.
|
66 |
An Electromagnetic Method for Cancer DetectionMcFerran, Jennifer 05 November 2009 (has links)
No description available.
|
67 |
Control of Switched Reluctance Motors Considering Mutual InductanceBae, Han-Kyung 15 August 2000 (has links)
A novel torque control algorithm, which adopts a two-phase excitation, is proposed to improve the performance of the Switched Reluctance Motor (SRM) drive. By exciting two adjacent phases instead of single phase, the changing rate and the magnitude of the phase currents are much reduced. Therefore the existing problems caused by the single-phase excitation such as large torque ripple during commutation, increased audible noise and fatigue of the rotor shaft are mitigated. The electromagnetic torque is efficiently distributed to each phase by the proposed Torque Distribution Function (TDF) that also compensates the effects of mutual coupling. To describe the effects of mutual coupling between phases, a set of voltage and torque equations is newly derived for the two-phase excitation. Parameters of the SRM are obtained by Finite Element Analysis (FEA) and verified by measurements. It is shown that the mutual inductance of two adjacent phases partly contributes to generate the electromagnetic torque and introduces coupling between two adjacent phases in the current or flux linkage control loop, which has been neglected in the single-phase excitation. The dynamics of the current or flux linkage loop are coupled and nonlinear due to the mutual inductance between two adjacent phases and the time varying nature of inductance. Each phase current or flux linkage needs to be controlled precisely to achieve the required performance. A feedback linearizing current controller is proposed to linearize and decouple current control loop along with a gain scheduling scheme to maintain performance of the current control loop regardless of rotor position as well as a feedback linearizing flux linkage controller. Finally, to reduce current or flux linkage ripple, a unipolar switching strategy is proposed. The unipolar switching strategy effectively doubles the switching frequency without increasing the actual switching frequency of the switches. This contributes to the mitigation of current or flux linkage ripple and hence to the reduction of the torque ripple. / Ph. D.
|
68 |
Performance Improvements of Multi-Channel Interleaving Voltage Regulator Modules with Integrated Coupling InductorsWong, Pit-Leong 25 April 2001 (has links)
The emergence of the Intel Pentium TM processor necessitates that a dedicated converter, the voltage regulator module (VRM), be physically located very close to the processor in computer power systems. The efficiency and transient response specifications of the VRM place contradictory requirements on the inductance. This dissertation discusses possible VRM inductor designs to improve efficiency without compromising transient responses.
The multi-channel interleaving buck converter is the most popular topology for present VRMs. Analysis in this work shows that the small-signal model of an n-channel interleaving buck can be simplified as a single buck converter. The equivalent inductance is 1/n of the inductance in the interleaving channel. The equivalent switching frequency is n times the switching frequency in each channel.
Through the transient response analysis, the critical inductance of the VRM is identified. The critical inductance is a tradeoff point between transient response and efficiency. The inductances smaller than the critical inductance have equal transient responses. For the inductances larger than the critical inductance, the VRM transient voltage spikes increase with the inductance. The critical inductance is the largest inductance that gives the fastest transient responses. The critical inductance is a function of the control bandwidth and the load transient steps.
Although multi-channel interleaving reduces the current ripple stress on the output capacitors, it cannot reduce the current ripples in each channel. The large current ripples reduce the efficiency of the VRM. With the proposed concept of integrated coupling inductors between channels, the converters have larger equivalent inductances in steady-state operation and smaller equivalent inductances in transient response. The steady-state current ripples can be reduced without compromising the transient response. The overall efficiency of the converter is improved.
In order to evaluate the application of the coupling inductor concept in multi-channels, an appropriate magnetic model is required. This dissertation proposes a flux reluctance model for the core and winding structures. With this reluctance model and mathematical transformations, the coupled inductors can be decoupled in the electric circuit simulation model. This reduces the complexity of the model when a large number of inductors are coupled. The model can be easily scaled to model the structures that involve more inductors. Examples are presented to show the application of this proposed model. / Ph. D.
|
69 |
Design of High-density Transformers for High-frequency High-power ConvertersShen, Wei 29 September 2006 (has links)
Moore's Law has been used to describe and predict the blossom of IC industries, so increasing the data density is clearly the ultimate goal of all technological development. If the power density of power electronics converters can be analogized to the data density of IC's, then power density is a critical indicator and inherent driving force to the development of power electronics. Increasing the power density while reducing or keeping the cost would allow power electronics to be used in more applications.
One of the design challenges of the high-density power converter design is to have high-density magnetic components which are usually the most bulky parts in a converter. Increasing the switching frequency to shrink the passive component size is the biggest contribution towards increasing power density. However, two factors, losses and parasitics, loom and compromise the effect. Losses of high-frequency magnetic components are complicated due to the eddy current effect in magnetic cores and copper windings. Parasitics of magnetic components, including leakage inductances and winding capacitances, can significantly change converter behavior. Therefore, modeling loss and parasitic mechanism and control them for certain design are major challenges and need to be explored extensively.
In this dissertation, the abovementioned issues of high-frequency transformers are explored, particularly in regards to high-power converter applications. Loss calculations accommodating resonant operating waveform and Litz wire windings are explored. Leakage inductance modeling for large-number-of-stand Litz wire windings is proposed. The optimal design procedure based on the models is developed. / Ph. D.
|
70 |
3D Commutation-Loop Design Methodology for a SiC Based Matrix Converter run in Step-up mode with PCB Aluminum Nitride Cooling InlayBaker, Victoria Isabelle 22 July 2021 (has links)
This work investigates three-dimensional power loop layout for application to a SiC based matrix converter, providing a symmetric, low-inductance solution. The thesis presents various layout types to achieve this design target, and details the implementation of a hybrid layout to the matrix converter phase-leg. This layout is more easily achievable with a surface-mount device package, which also offers benefits such as ease in manufacturing, and a compact package. In order to implement a surface-mount device, a PCB thermal management strategy should be utilized. An evaluation of these methods is also presented in the work. The final power loop solution that implements an aluminum nitride inlay is evaluated through simulated parasitic extraction and experimental double pulse tests. The layout achieves small, symmetric loop inductances. Finally, the full power, three-phase matrix converter demonstrates the successful implementation of this power loop layout. / Master of Science / In the United States, 40% primary energy consumption comes from electricity generation, which is the fastest growing form of end-use energy. Industries such as commercial airlines are increasing their use of electric energy, while phasing out the mechanical and pneumatic aircraft components, as they offer better performance and lower cost. Thus, implementation of high efficiency, electrical system can reduce energy consumption, fuel consumption and carbon emissions [1]. As more systems rely on this electric power, the conversion from one level of power (voltage and current) to another, is critical.
In the quest to develop high efficiency power converters, wide bandgap semiconductor devices are being turned to. These devices, specifically Silicon Carbide (SiC) devices, offer high temperature and high voltage operation that a traditional Silicon (Si) device cannot. Coupled with fast switching transients, these metal oxide semiconductors field effect transistors (MOSFETs), could provide higher levels of efficiency and power density.
This work investigates the benefits of a three-dimensional (3D) printed circuit board (PCB) layout. With this type of layout, a critical parasitic – inductance – can be minimized. As the SiC device can operate at high switching speeds, they incur higher di/dt, and dv/dt slew rates. If trace inductance is not minimal, overshoots and ringing will occur. This can be addressed by stacking PCB traces on top of one another, the induced magnetic field can be reduced. In turn, the system inductance is lowered as well. The reduction of this parameter in the system, reduces the overshoot and ringing.
This particular work applies this technique to a 15kW matrix converter. This converter poses a particular design challenge as there are a large number of devices, which can lead to longer, higher inductance PCB traces. The goal of this work is to minimize the parasitic inductance in this converter for high efficiency, high power density operation.
|
Page generated in 0.0485 seconds