• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characteristics of bed shear stress in the coastal waters

Gao, Yu-feng 13 February 2012 (has links)
A 3-axis acoustic Doppler Velocimeter (ADV) with high sampling rate was used to measure the bed shear stress and turbulence under wave-current interaction conditions in this study. Experimental sites include laboratory tank, Love River in Kaohsiung and Howan coastal waters in Pingtung. Bed shear stress is estimated primarily by the inertial dissipation method, also by the turbulent kinetic energy method and eddy correlation method. Results of the laboratory experiments indicate that the bed shear stress increases as both the flow speed and wave height increase, and the flow speed is a more important factor. Field experiments can be divided into several types. The first type is under slow flows and calm waves. Love River is a typical condition of this type with turbid waters and a low flow speed. During the experimental period the ADV correlations reach 90% or more. Because the river flow is quite small, no significant bed shear stress is produced and u* is mostly less than 1 cm/s. As a result the deposition effect is much larger than erosion, thus a very thick layer of mud is formed on the riverbed. The observations in Howan in April 2010 also reveal the condition of slow flows and small waves, and the bed shear stress is also quite small. Due to the factors of clean coastal waters and weak turbulence in this season, the quality of ADV signals is poor. The second type is under large flows and small waves, as shown from the observations of Howan in April 2011, during which the maximum speed reached 25 cm/s and wave heights less than 20 cm. In this experiment the shear stress is large, the u* are mostly greater than 0.8 cm/s and the value of the drag coefficient is 0.0021; the ADV signals have good quality and the inertial sub-range is well defined. The third type is under weak flows and large waves. The observations of Howan in July 2011 show significant rainfall and maximum wave heights of 90 cm. In this case the u* are mostly centered around 1 cm/s. The acoustic backscatter intensity is positively correlated with the turbidity and wave height. Sizable bed shear stress induced by the orbital velocity of waves contributes a significant part to the total bed shear stress.
2

Beräkning av turbulenta flöden enligt inertial dissipationsmetoden med mätdata från en specialkonstruerad lättviktsanemometer samt jämförelse med turbulenta utbytesmetoden

Nilsson, Charlotta January 2003 (has links)
För att ta reda på användbarheten av en specialkonstruerad lättviktsanemometer när det gälleratt beräkna turbulenta flöden, har mätdata från instrumentet använts i den så kallade inertialdissipationsmetoden. Resultatet har jämförts med direkta flödesberäkningar från enljudanemometer enligt turbulenta utbytesmetoden, vilka antas vara korrekta. Resultatanalyshar utförts från mätningar på höjderna 8, 16 och 20 m. Lättviktssanemometern (inertialdissipationsmetoden) visade sig stämma bra överens med ljudanemometern (turbulentautbytesmetoden) under nära neutrala förhållanden och vid höga vindhastigheter. Resultatenvisar ett inflytande av havsvågor och den bör därför användas vid uppbyggande sjö för attundvika detta. I rapporten presenteras en rekommendation med nödvändiga korrektioner föranvändning av lättviktsanemometern till turbulenta flödesberäkningar enligt inertialdissipationsmetoden. / In order to evaluate a combined cup anemometer/wind vane profile instrument, measurementsfrom the instrument has been used in the so called inertial-dissipation method to derive itsability to measure turbulent fluxes. The result was compared to data from a sonic anemometercalculated with eddy-correlation method, which is assumed to be correct. Analysis of theresult was made from measurements at levels 8, 16 and 20 m. The profile instrument (inertialdissipationmethod) agreed well with the sonic anemometer (eddy-correlation method) duringnear neutral conditions and at high wind speed. The profile instrument also proved to be mostaccurate at conditions of growing sea, otherwise the result was affected by waves. In thereport there is also a recommendation for specific corrections when the profile instrument isused for calculating turbulent fluxes according to the inertial-dissipation method.
3

Evaluation of the Inertial Dissipation Method over Land / Utvärdering av inertialdissipationsmetoden över land

Carlsson, Björn January 2003 (has links)
The focus was to evaluate the Inertial Dissipation Method (IDM) over land duringunstable conditions. This was done by comparing the friction velocity, u*, from theeddy-correlation method (ECM) with u* from IDM. The result can be used to see ifIDM can rely on its assumptions, since the surface-layer theory is more fulfilled overland, where we for example do not have wave influence. The measurements weretaken from the flat agricultural site Marsta, 8 km north of Uppsala, Sweden. The result shows that IDM works well over land (relative standard deviation of about 10 %). For weakly unstable stratification, it is enough to use an assumption of neutralconditions in the IDM calculations. If it is more unstable, one should include theinfluence of stability and also include an imbalance term. The imbalance term isintroduced implicitly by varying the effective Kolmogorov’s constant with stability.The effective Kolmogorov’s constant used here, varied from 0.50 up to above 0.80. To calculate u* using IDM, a first estimation of u* was calculated from aparameterised drag coefficient CD. Also, to imitate the measuring setup on a movingplatform on the sea, the stability parameter, z/L, was calculated using a bulkestimatedheat flux. The large scatter showed that it is important that theparameterisations of CD and the heat flux are good. One can conclude that the IDM as a method to determine turbulent fluxes over landworks satisfactory. The larger scatter over sea is probably an effect of sea waveinfluence, even though the sea surface is considered more homogeneous and theconditions more stationary. / Syftet var att utvärdera inertial-dissipationsmetoden (IDM) över land under instabilaförhållanden. Detta gjordes genom att jämföra friktionshastigheten, u* , från eddycorrelation-metoden (ECM) med u* från IDM. Resultaten kan användas till att sehuruvida man kan använda de antaganden som IDM vilar på. Ytskiktsteorin ärtroligen mer uppfylld över land, eftersom det t.ex. inte finns något våginflytande.Mätningarna är gjorda i Marsta, som ligger i ett flackt jordbrukslandskap, 8 km norrom Uppsala. Resultatet visar att IDM fungerar tillfredställande över land (relativ standardavvikelseca 10 %). För svagt instabila förhållanden, räcker det med att anta neutral skiktning iIDM-beräkningarna. Om det är mer instabilt, bör man ta hänsyn till stabiliteten ochäven inkludera en obalansterm. Obalanstermen introduceras implicit genom att varieraden effektiva Kolmogorovkonstanten med stabiliteten. Den effektivaKolmogorovkonstanten som användes här, varierade från 0.5 till över 0.8. För att beräkna u* med hjälp av IDM, beräknades en första uppskattning av u* genom att använda en parametriserad ”drag-coefficient” CD. För att efterlikna demedel man har att tillgå på skepp och bojar i rörelse ute på havet, beräknadesstabilitetsparametern, z/L, med hjälp av ett bulkbestämt värmeflöde. Den storaspridningen av data visade att det är viktigt att parameteriseringen av CD samt värmeflödet är bra. Man kan dra slutsatsen att dissipationsmetoden fungerar tillfredsställande, som metodatt bestämma turbulenta flöden över land. Den större spridningen som man fått överhav är förmodligen en effekt av t.ex. vågor, trots att havsytan anses vara merhomogen och förhållandena mer stationära.
4

Air-Sea Fluxes of CO2 : Analysis Methods and Impact on Carbon Budget

Norman, Maria January 2013 (has links)
Carbon dioxide (CO2) is an important greenhouse gas, and the atmospheric concentration of CO2 has increased by more than 100 ppm since prior to the industrial revolution.  The global oceans are considered an important sink of atmospheric CO2, since approximately one third of the anthropogenic emissions are absorbed by the oceans. To be able to model the global carbon cycle and the future climate, it is important to have knowledge of the processes controlling the air-sea exchange of CO2. In this thesis, measurements as well as a model is used in order to increase the knowledge of the exchange processes. The air-sea flux of CO2 is estimated from high frequency measurements using three methods; one empirical method, and two methods with a solid theoretical foundation. The methods are modified to be applicable for various atmospheric stratifications, and the agreement between methods is good in average. A new parameterization of the transfer velocity (the rate of transfer across the air-sea interface), is implemented in a Baltic Sea model. The new parameterization includes also the mechanism of water-side convection. The impact of including the new parameterization is relatively small due to feedback processes in the model. The new parameterization is however more representative for flux calculations using in-situ measurement or remote sensing products. When removing the feedback to the model, the monthly average flux increases by up to 20% in some months, compared to when water-side convection is not included. The Baltic Sea carbon budget was estimated using the Baltic Sea model, and the Baltic Sea was found to be a net sink of CO2. This is consistent with some previous studies, while contradictory to others. The dissimilarity between studies indicates the difficulty in estimating the carbon budget mainly due to variations of the CO2 uptake/release in time and space. Local variations not captured by the model, such as coastal upwelling, give uncertainties to the model. Coastal upwelling can alter the uptake/release of CO2 in a region by up to 250%. If upwelling would be included in the model, the Baltic Sea might be considered a smaller sink of CO2.
5

Air-Sea Flux Measurements Over The Bay Of Bengal During A Summer Monsoon

Raju, Jampana V S 11 1900 (has links)
Majority of the rain producing monsoon systems in India form or intensify over the Bay of Bengal and move onto the land. We expect the air-sea interaction to be a crucial factor in the frequent genesis and intensification of monsoon systems over the Bay. Knowledge of air-sea fluxes is essential in determining the air-sea interactions. However, the Bay remains a poorly monitored ocean basin and the state of the near surface conditions during the monsoon months remains to be studied in detail. For example, we do not know yet which among the various flux formulae used in the General circulation models are appropriate over the Bay since there are no direct measurements of surface fluxes here during the peak monsoon months. The present thesis aims towards filing that gap. In this thesis fluxes were computed using the Bulk method, Inertial dissipation method and direct covariance method. The flux comparisons were reasonable during certain flow conditions which are clearly identified. When these conditions are not met the differences among the fluxes from these methods can be larger than the inherent uncertainties' in the methods. Stratification, flow distortion and averaging time are the key variables that give rise to the differences in the fluxes. It is found that there are significant differences in the surface flux estimates computed from different atmospheric General Circulation Model bulk parameterization schemes. In this thesis, the flow gradients are estimated by taking advantage of the natural pitch and roll motion of the ship. A attempt is made to gain insight into the flow distortion and its influence on the fluxes. In our analysis it is found that the displacement of the streamlines is an important component in quantifying flow distortion.

Page generated in 0.1418 seconds