• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • Tagged with
  • 21
  • 21
  • 21
  • 21
  • 21
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Motion Planning for the Two-Phase Stefan Problem in Level Set Formulation

Bernauer, Martin 17 December 2010 (has links)
This thesis is concerned with motion planning for the classical two-phase Stefan problem in level set formulation. The interface separating the fluid phases from the solid phases is represented as the zero level set of a continuous function whose evolution is described by the level set equation. Heat conduction in the two phases is modeled by the heat equation. A quadratic tracking-type cost functional that incorporates temperature tracking terms and a control cost term that expresses the desire to have the interface follow a prescribed trajectory by adjusting the heat flux through part of the boundary of the computational domain. The formal Lagrange approach is used to establish a first-order optimality system by applying shape calculus tools. For the numerical solution, the level set equation and its adjoint are discretized in space by discontinuous Galerkin methods that are combined with suitable explicit Runge-Kutta time stepping schemes, while the temperature and its adjoint are approximated in space by the extended finite element method (which accounts for the weak discontinuity of the temperature by a dynamic local modification of the underlying finite element spaces) combined with the implicit Euler method for the temporal discretization. The curvature of the interface which arises in the adjoint system is discretized by a finite element method as well. The projected gradient method, and, in the absence of control constraints, the limited memory BFGS method are used to solve the arising optimization problems. Several numerical examples highlight the potential of the proposed optimal control approach. In particular, they show that it inherits the geometric flexibility of the level set method. Thus, in addition to unidirectional solidification, closed interfaces and changes of topology can be tracked. Finally, the Moreau-Yosida regularization is applied to transform a state constraint on the position of the interface into a penalty term that is added to the cost functional. The optimality conditions for this penalized optimal control problem and its numerical solution are discussed. An example confirms the efficacy of the state constraint. / Die vorliegende Arbeit beschäftigt sich mit einem Optimalsteuerungsproblem für das klassische Stefan-Problem in zwei Phasen. Die Phasengrenze wird als Niveaulinie einer stetigen Funktion modelliert, was die Lösung der so genannten Level-Set-Gleichung erfordert. Durch Anpassen des Wärmeflusses am Rand des betrachteten Gebiets soll ein gewünschter Verlauf der Phasengrenze angesteuert werden. Zusammen mit dem Wunsch, ein vorgegebenes Temperaturprofil zu approximieren, wird dieses Ziel in einem quadratischen Zielfunktional formuliert. Die notwendigen Optimalitätsbedingungen erster Ordnung werden formal mit Hilfe der entsprechenden Lagrange-Funktion und unter Benutzung von Techniken aus der Formoptimierung hergeleitet. Für die numerische Lösung müssen die auftretenden partiellen Differentialgleichungen diskretisiert werden. Dies geschieht im Falle der Level-Set-Gleichung und ihrer Adjungierten auf Basis von unstetigen Galerkin-Verfahren und expliziten Runge-Kutta-Methoden. Die Wärmeleitungsgleichung und die entsprechende Gleichung im adjungierten System werden mit einer erweiterten Finite-Elemente-Methode im Ort sowie dem impliziten Euler-Verfahren in der Zeit diskretisiert. Dieser Zugang umgeht die aufwändige Adaption des Gitters, die normalerweise bei der FE-Diskretisierung von Phasenübergangsproblemen unvermeidbar ist. Auch die Krümmung der Phasengrenze wird numerisch mit Hilfe der Methode der finiten Elemente angenähert. Zur Lösung der auftretenden Optimierungsprobleme werden ein Gradienten-Projektionsverfahren und, im Fall dass keine Kontrollschranken vorliegen, die BFGS-Methode mit beschränktem Speicherbedarf eingesetzt. Numerische Beispiele beleuchten die Stärken des vorgeschlagenen Zugangs. Es stellt sich insbesondere heraus, dass sich die geometrische Flexibilität der Level-Set-Methode auf den vorgeschlagenen Zugang zur optimalen Steuerung vererbt. Zusätzlich zur gerichteten Bewegung einer flachen Phasengrenze können somit auch geschlossene Phasengrenzen sowie topologische Veränderungen angesteuert werden. Exemplarisch, und zwar an Hand einer Beschränkung an die Lage der Phasengrenze, wird auch noch die Behandlung von Zustandsbeschränkungen mittels der Moreau-Yosida-Regularisierung diskutiert. Ein numerisches Beispiel demonstriert die Wirkung der Zustandsbeschränkung.
12

The impact of a curious type of smoothness conditions on convergence rates in l1-regularization

Bot, Radu Ioan, Hofmann, Bernd January 2013 (has links)
Tikhonov-type regularization of linear and nonlinear ill-posed problems in abstract spaces under sparsity constraints gained relevant attention in the past years. Since under some weak assumptions all regularized solutions are sparse if the l1-norm is used as penalty term, the l1-regularization was studied by numerous authors although the non-reflexivity of the Banach space l1 and the fact that such penalty functional is not strictly convex lead to serious difficulties. We consider the case that the sparsity assumption is narrowly missed. This means that the solutions may have an infinite number of nonzero but fast decaying components. For that case we formulate and prove convergence rates results for the l1-regularization of nonlinear operator equations. In this context, we outline the situations of Hölder rates and of an exponential decay of the solution components.
13

Numerical Methods for Bayesian Inference in Hilbert Spaces

Sprungk, Björn 15 February 2018 (has links)
Bayesian inference occurs when prior knowledge about uncertain parameters in mathematical models is merged with new observational data related to the model outcome. In this thesis we focus on models given by partial differential equations where the uncertain parameters are coefficient functions belonging to infinite dimensional function spaces. The result of the Bayesian inference is then a well-defined posterior probability measure on a function space describing the updated knowledge about the uncertain coefficient. For decision making and post-processing it is often required to sample or integrate wit resprect to the posterior measure. This calls for sampling or numerical methods which are suitable for infinite dimensional spaces. In this work we focus on Kalman filter techniques based on ensembles or polynomial chaos expansions as well as Markov chain Monte Carlo methods. We analyze the Kalman filters by proving convergence and discussing their applicability in the context of Bayesian inference. Moreover, we develop and study an improved dimension-independent Metropolis-Hastings algorithm. Here, we show geometric ergodicity of the new method by a spectral gap approach using a novel comparison result for spectral gaps. Besides that, we observe and further analyze the robustness of the proposed algorithm with respect to decreasing observational noise. This robustness is another desirable property of numerical methods for Bayesian inference. The work concludes with the application of the discussed methods to a real-world groundwater flow problem illustrating, in particular, the Bayesian approach for uncertainty quantification in practice. / Bayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
14

On sampling bias in multiphase flows: Particle image velocimetry in bubbly flows

Ziegenhein, Thomas, Lucas, Dirk January 2016 (has links)
Measuring the liquid velocity and turbulence parameters in multiphase flows is a challenging task. In general, measurements based on optical methods are hindered by the presence of the gas phase. In the present work, it is shown that this leads to a sampling bias. Here, particle image velocimetry (PIV) is used to measure the liquid velocity and turbulence in a bubble column for different gas volume flow rates. As a result, passing bubbles lead to a significant sampling bias, which is evaluated by the mean liquid velocity and Reynolds stress tensor components. To overcome the sampling bias a window averaging procedure that waits a time depending on the locally distributed velocity information (hold processor) is derived. The procedure is demonstrated for an analytical test function. The PIV results obtained with the hold processor are reasonable for all values. By using the new procedure, reliable liquid velocity measurements in bubbly flows, which are vitally needed for CFD validation and modeling, are possible. In addition, the findings are general and can be applied to other flow situations and measuring techniques.
15

The Eyring-Kramers formula for Poincaré and logarithmic Sobolev inequalities / Die Eyring-Kramer-Formel für Poincaré- und logarithmische Sobolev-Ungleichungen

Schlichting, André 25 October 2012 (has links)
The topic of this thesis is a diffusion process on a potential landscape which is given by a smooth Hamiltonian function in the regime of small noise. The work provides a new proof of the Eyring-Kramers formula for the Poincaré inequality of the associated generator of the diffusion. The Poincaré inequality characterizes the spectral gap of the generator and establishes the exponential rate of convergence towards equilibrium in the L²-distance. This result was first obtained by Bovier et. al. in 2004 relying on potential theory. The presented approach in the thesis generalizes to obtain also asymptotic sharp estimates of the constant in the logarithmic Sobolev inequality. The optimal constant in the logarithmic Sobolev inequality characterizes the convergence rate to equilibrium with respect to the relative entropy, which is a stronger distance as the L²-distance and slightly weaker than the L¹-distance. The optimal constant has here no direct spectral representation. The proof makes use of the scale separation present in the dynamics. The Eyring-Kramers formula follows as a simple corollary from the two main results of the work: The first one shows that the associated Gibbs measure restricted to a basin of attraction has a good Poincaré and logarithmic Sobolev constants providing the fast convergence of the diffusion to metastable states. The second main ingredient is a mean-difference estimate. Here a weighted transportation distance is used. It contains the main contribution to the Poincaré and logarithmic Sobolev constant, resulting from exponential long waiting times of jumps between metastable states of the diffusion.
16

Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation Theory

Eltzner, Benjamin 29 May 2013 (has links)
In this work the extension of the criterion for local thermal equilibrium by Buchholz, Ojima and Roos to curved spacetime as introduced by Schlemmer is investigated. Several problems are identified and especially the instability under time evolution which was already observed by Schlemmer is inspected. An alternative approach to local thermal equilibrium in quantum field theories on curved spacetimes is presented and discussed. In the following the dynamic system of the linear field and matter perturbations in the generic model of inflation is studied in the view of ambiguity of quantisation. In the last part the compatibility of the temperature fluctuations of the cosmic microwave background radiation with local thermal equilibrium is investigated.:1. Introduction 5 2. Technical Background 10 2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10 2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10 2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13 2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17 2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21 2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24 2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32 2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34 2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35 2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38 2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40 2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46 2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49 3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54 3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55 3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57 3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61 3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65 3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71 3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78 3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80 3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82 3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91 3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92 3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94 3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96 3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100 3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4. Cosmological Perturbation Theory 105 4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106 4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106 4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111 4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117 4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120 4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120 4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125 5. Conclusion and Outlook 131 A. Technical proofs 136 A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144 B. Introduction to Probability Theory 146 Bibliography 150 Correction of Lemma 3.1.2 155 / In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft.:1. Introduction 5 2. Technical Background 10 2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10 2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10 2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13 2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17 2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21 2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24 2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32 2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34 2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35 2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38 2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40 2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46 2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49 3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54 3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55 3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57 3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61 3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65 3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71 3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78 3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80 3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82 3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91 3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92 3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94 3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96 3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100 3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4. Cosmological Perturbation Theory 105 4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106 4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106 4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111 4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117 4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120 4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120 4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125 5. Conclusion and Outlook 131 A. Technical proofs 136 A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144 B. Introduction to Probability Theory 146 Bibliography 150 Correction of Lemma 3.1.2 155
17

Sobol'-Sensitivitätsanalyse der Untergrundparameter bei der Simulation von oberflächennaher Geothermie mithilfe von Gauß-Prozess-Emulatoren

Lubashevsky, Katrin 03 May 2023 (has links)
Um den Planungsprozess von oberflächennahen Geothermieanlagen verbessern zu können, ist es von Vorteil, die Parameter zu kennen, welche besonders großen Einfluss auf die Leistung einer solchen Anlage haben. Um dies zu untersuchen, können globale Sensitivitätsanalysen durchgeführt werden. Die in dieser Arbeit vorgestellte Sensitivitätsanalyse beinhaltet ein Parameterscreening mit der One-Variable-At-a-Time-Methode und eine anschließend durchgeführte globale Sensitivitätsanalyse mithilfe von Sobol‘-Indizes. Hierbei werden die Eingabeparameter des verwendeten Berechnungsmodells innerhalb vorher definierter Wertebereiche und gemäß festgelegter Verteilungen variiert, was in einer großen Anzahl an Modelldurchläufen resultiert. Daher kommen bei Sensitivitätsanalysen oftmals approximierte Modelle zum Einsatz, welche das Verhalten des ursprünglichen Berechnungsmodells nachahmen sollen, um auf diese Weise eine geringere Rechenzeit zu erzielen. Hierfür werden in der vorliegenden Arbeit sogenannte Gauß-Prozess-Emulatoren verwendet. In dieser Arbeit werden die genannten Methoden aus mathematischer Sicht vorgestellt und eingeordnet und abschließend an einem analytischen Modell für die Untergrundparameter einer Geothermieanlage vorgeführt.
18

Optimal Control of Thermoviscoplasticity

Stötzner, Ailyn 09 November 2018 (has links)
This thesis is devoted to the study of optimal control problems governed by a quasistatic, thermoviscoplastic model at small strains with linear kinematic hardening, von Mises yield condition and mixed boundary conditions. Mathematically, the thermoviscoplastic equations are given by nonlinear partial differential equations and a variational inequality of second kind in order to represent the elastic, plastic and thermal effects. Taking into account thermal effects we have to handle numerous mathematical challenges during the analysis of the thermoviscoplastic model, mainly due to the low integrability of the nonlinear terms on the right-hand side of the heat equation. One of our main results is the existence of a unique weak solution, which is proved by means of a fixed-point argument and by employing maximal parabolic regularity theory. Furthermore, we define the related control-to-state mapping and investigate properties of this mapping such as boundedness, weak continuity and local Lipschitz continuity. Another major result is the finding that the mapping is Hadamard differentiable; a main ingredient is the reformulation of the variational inequality, the so called viscoplastic flow rule, as a Banach space-valued ordinary differential equation with non-differentiable right-hand side. Subsequently, we consider an optimal control problem governed by thermoviscoplasticity and show the existence of a minimizer. Finally, close this thesis with numerical examples. / Diese Arbeit ist der Untersuchung von Optimalsteuerproblemen gewidmet, denen ein quasistatisches, thermoviskoplastisches Model mit kleinen Deformationen, mit linearem kinematischen Hardening, von Mises Fließbedingung und gemischten Randbedingungen zu Grunde liegt. Mathematisch werden thermoviskoplastische Systeme durch nichtlineare partielle Differentialgleichungen und eine variationelle Ungleichung der zweiten Art beschrieben, um die elastischen, plastischen und thermischen Effekte abzubilden. Durch die Miteinbeziehung thermischer Effekte, treten verschiedene mathematische Schwierigkeiten während der Analysis des thermoviskoplastischen Systems auf, die ihren Ursprung hauptsächlich in der schlechten Regularität der nichtlinearen Terme auf der rechten Seite der Wärmeleitungsgleichung haben. Eines unserer Hauptresultate ist die Existenz einer eindeutigen schwachen Lösung, welches wir mit Hilfe von einem Fixpunktargument und unter Anwendung von maximaler parabolischer Regularitätstheorie beweisen. Zudem definieren wir die entsprechende Steuerungs-Zustands-Abbildung und untersuchen Eigenschaften dieser Abbildung wie die Beschränktheit, schwache Stetigkeit und lokale Lipschitz Stetigkeit. Ein weiteres wichtiges Resultat ist, dass die Abbildung Hadamard differenzierbar ist; Hauptbestandteil des Beweises ist die Umformulierung der variationellen Ungleichung, der sogenannten viskoplastischen Fließregel, als eine Banachraum-wertige gewöhnliche Differentialgleichung mit nichtdifferenzierbarer rechter Seite. Schließlich runden wir diese Arbeit mit numerischen Beispielen ab.
19

Studies on two specific inverse problems from imaging and finance

Rückert, Nadja 16 July 2012 (has links)
This thesis deals with regularization parameter selection methods in the context of Tikhonov-type regularization with Poisson distributed data, in particular the reconstruction of images, as well as with the identification of the volatility surface from observed option prices. In Part I we examine the choice of the regularization parameter when reconstructing an image, which is disturbed by Poisson noise, with Tikhonov-type regularization. This type of regularization is a generalization of the classical Tikhonov regularization in the Banach space setting and often called variational regularization. After a general consideration of Tikhonov-type regularization for data corrupted by Poisson noise, we examine the methods for choosing the regularization parameter numerically on the basis of two test images and real PET data. In Part II we consider the estimation of the volatility function from observed call option prices with the explicit formula which has been derived by Dupire using the Black-Scholes partial differential equation. The option prices are only available as discrete noisy observations so that the main difficulty is the ill-posedness of the numerical differentiation. Finite difference schemes, as regularization by discretization of the inverse and ill-posed problem, do not overcome these difficulties when they are used to evaluate the partial derivatives. Therefore we construct an alternative algorithm based on the weak formulation of the dual Black-Scholes partial differential equation and evaluate the performance of the finite difference schemes and the new algorithm for synthetic and real option prices.
20

Contributions to the Simulation and Optimization of the Manufacturing Process and the Mechanical Properties of Short Fiber-Reinforced Plastic Parts

Ospald, Felix 16 December 2019 (has links)
This thesis addresses issues related to the simulation and optimization of the injection molding of short fiber-reinforced plastics (SFRPs). The injection molding process is modeled by a two phase flow problem. The simulation of the two phase flow is accompanied by the solution of the Folgar-Tucker equation (FTE) for the simulation of the moments of fiber orientation densities. The FTE requires the solution of the so called 'closure problem'', i.e. the representation of the 4th order moments in terms of the 2nd order moments. In the absence of fiber-fiber interactions and isotropic initial fiber density, the FTE admits an analytical solution in terms of elliptic integrals. From these elliptic integrals, the closure problem can be solved by a simple numerical inversion. Part of this work derives approximate inverses and analytical inverses for special cases of fiber orientation densities. Furthermore a method is presented to generate rational functions for the computation of arbitrary moments in terms of the 2nd order closure parameters. Another part of this work treats the determination of effective material properties for SFRPs by the use of FFT-based homogenization methods. For these methods a novel discretization scheme, the 'staggered grid'' method, was developed and successfully tested. Furthermore the so called 'composite voxel'' approach was extended to nonlinear elasticity, which improves the approximation of material properties at the interfaces and allows the reduction of the model order by several magnitudes compared to classical approaches. Related the homogenization we investigate optimal experimental designs to robustly determine effective elastic properties of SFRPs with the least number of computer simulations. Finally we deal with the topology optimization of injection molded parts, by extending classical SIMP-based topology optimization with an approximate model for the fiber orientations. Along with the compliance minimization by topology optimization we also present a simple shape optimization method for compensation of part warpage for an black-box production process.:Acknowledgments v Abstract vii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Nomenclature 3 Chapter 2. Numerical simulation of SFRP injection molding 5 2.1 Introduction 5 2.2 Injection molding technology 5 2.3 Process simulation 6 2.4 Governing equations 8 2.5 Numerical implementation 18 2.6 Numerical examples 25 2.7 Conclusions and outlook 27 Chapter 3. Numerical and analytical methods for the exact closure of the Folgar-Tucker equation 35 3.1 Introduction 35 3.2 The ACG as solution of Jeffery's equation 35 3.3 The exact closure 36 3.4 Carlson-type elliptic integrals 37 3.5 Inversion of R_D-system 40 3.6 Moment tensors of the angular central Gaussian distribution on the n-sphere 49 3.7 Experimental evidence for ACG distribution hypothesis 54 3.8 Conclusions and outlook 60 Chapter 4. Homogenization of SFRP materials 63 4.1 Introduction 63 4.2 Microscopic and macroscopic model of SFRP materials 63 4.3 Effective linear elastic properties 65 4.4 The staggered grid method 68 4.5 Model order reduction by composite voxels 80 4.6 Optimal experimental design for parameter identification 93 Chapter 5. Optimization of parts produced by SFRP injection molding 103 5.1 Topology optimization 103 5.2 Warpage compensation 110 Chapter 6. Conclusions and perspectives 115 Appendix A. Appendix 117 A.1 Evaluation of R_D in Python 117 A.2 Approximate inverse for R_D in Python 117 A.3 Inversion of R_D using Newton's/Halley's method in Python 117 A.4 Inversion of R_D using fixed point method in Python 119 A.5 Moment computation using SymPy 120 A.6 Fiber collision test 122 A.7 OED calculation of the weighting matrix 123 A.8 OED Jacobian of objective and constraints 123 Appendix B. Theses 125 Bibliography 127 / Diese Arbeit befasst sich mit Fragen der Simulation und Optimierung des Spritzgießens von kurzfaserverstärkten Kunststoffen (SFRPs). Der Spritzgussprozess wird durch ein Zweiphasen-Fließproblem modelliert. Die Simulation des Zweiphasenflusses wird von der Lösung der Folgar-Tucker-Gleichung (FTE) zur Simulation der Momente der Faserorientierungsdichten begleitet. Die FTE erfordert die Lösung des sogenannten 'Abschlussproblems'', d. h. die Darstellung der Momente 4. Ordnung in Form der Momente 2. Ordnung. In Abwesenheit von Faser-Faser-Wechselwirkungen und anfänglich isotroper Faserdichte lässt die FTE eine analytische Lösung durch elliptische Integrale zu. Aus diesen elliptischen Integralen kann das Abschlussproblem durch eine einfache numerische Inversion gelöst werden. Ein Teil dieser Arbeit leitet approximative Inverse und analytische Inverse für spezielle Fälle von Faserorientierungsdichten her. Weiterhin wird eine Methode vorgestellt, um rationale Funktionen für die Berechnung beliebiger Momente in Bezug auf die Abschlussparameter 2. Ordnung zu generieren. Ein weiterer Teil dieser Arbeit befasst sich mit der Bestimmung effektiver Materialeigenschaften für SFRPs durch FFT-basierte Homogenisierungsmethoden. Für diese Methoden wurde ein neuartiges Diskretisierungsschema 'staggerd grid'' entwickelt und erfolgreich getestet. Darüber hinaus wurde der sogenannte 'composite voxel''-Ansatz auf die nichtlineare Elastizität ausgedehnt, was die Approximation der Materialeigenschaften an den Grenzflächen verbessert und die Reduzierung der Modellordnung um mehrere Größenordnungen im Vergleich zu klassischen Ansätzen ermöglicht. Im Zusammenhang mit der Homogenisierung untersuchen wir optimale experimentelle Designs, um die effektiven elastischen Eigenschaften von SFRPs mit der geringsten Anzahl von Computersimulationen zuverlässig zu bestimmen. Schließlich beschäftigen wir uns mit der Topologieoptimierung von Spritzgussteilen, indem wir die klassische SIMP-basierte Topologieoptimierung um ein Näherungsmodell für die Faserorientierungen erweitern. Neben der Compliance-Minimierung durch Topologieoptimierung stellen wir eine einfache Formoptimierungsmethode zur Kompensation von Teileverzug für einen Black-Box-Produktionsprozess vor.:Acknowledgments v Abstract vii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Nomenclature 3 Chapter 2. Numerical simulation of SFRP injection molding 5 2.1 Introduction 5 2.2 Injection molding technology 5 2.3 Process simulation 6 2.4 Governing equations 8 2.5 Numerical implementation 18 2.6 Numerical examples 25 2.7 Conclusions and outlook 27 Chapter 3. Numerical and analytical methods for the exact closure of the Folgar-Tucker equation 35 3.1 Introduction 35 3.2 The ACG as solution of Jeffery's equation 35 3.3 The exact closure 36 3.4 Carlson-type elliptic integrals 37 3.5 Inversion of R_D-system 40 3.6 Moment tensors of the angular central Gaussian distribution on the n-sphere 49 3.7 Experimental evidence for ACG distribution hypothesis 54 3.8 Conclusions and outlook 60 Chapter 4. Homogenization of SFRP materials 63 4.1 Introduction 63 4.2 Microscopic and macroscopic model of SFRP materials 63 4.3 Effective linear elastic properties 65 4.4 The staggered grid method 68 4.5 Model order reduction by composite voxels 80 4.6 Optimal experimental design for parameter identification 93 Chapter 5. Optimization of parts produced by SFRP injection molding 103 5.1 Topology optimization 103 5.2 Warpage compensation 110 Chapter 6. Conclusions and perspectives 115 Appendix A. Appendix 117 A.1 Evaluation of R_D in Python 117 A.2 Approximate inverse for R_D in Python 117 A.3 Inversion of R_D using Newton's/Halley's method in Python 117 A.4 Inversion of R_D using fixed point method in Python 119 A.5 Moment computation using SymPy 120 A.6 Fiber collision test 122 A.7 OED calculation of the weighting matrix 123 A.8 OED Jacobian of objective and constraints 123 Appendix B. Theses 125 Bibliography 127

Page generated in 0.12 seconds