• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 28
  • Tagged with
  • 80
  • 80
  • 80
  • 80
  • 80
  • 16
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The effects of halogen elements on the opening of an icosahedral B12 framework

Gong, Liang-Fa, Li, Wei, Osorio, Edison, Wu, Xin-Min, Heine, Thomas, Liu, Lei 19 June 2018 (has links)
The fully halogenated or hydrogenated B12X12²- (X = H, F, Cl, Br and I) clusters are confirmed to be icosahedral.Onthe other hand, the bare B12 cluster is shown to have a planar structure.Aprevious study showed that a transformation from an icosahedron to a plane happens when 5 to 7 iodine atoms are remained [P. Farràs et al., Chem. - Eur. J. 18, 13208–13212 (2012)]. Later, the transition was confirmed to be seven iodine atoms based on an infrared spectroscopy study [M. R. Fagiania et al., Chem. Phys. Lett. 625, 48–52 (2015)]. In this study, we investigated the effects of different halogen atoms on the opening of the B12 icosahedral cage by means of density functional theory calculations.We found that the halogen elements do not have significant effects on the geometries of the clusters. The computed infrared (IR) spectra show similar representative peaks for all halogen doped clusters. Interestingly, we found a blue-shift in the IR spectra with the increase in the mass of the halogen atoms. Further, we compared the Gibbs free energies at different temperatures for different halogen atoms. The results show that the Gibbs free energy differences between open and close structures of B12X7- become larger when heavier halogen atoms are presented. This interesting finding was subsequently investigated by the energy decomposition analysis.
12

Tight-binding approximations to time-dependent density functional theory: A fast approach for the calculation of electronically excited states

Rüger, Robert, van Lenthe, Erik, Heine, Thomas, Visscher, Lucas 19 June 2018 (has links)
We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.
13

Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

Rüger, Robert, Niehaus, Thomas, van Lenthe, Erik, Heine, Thomas, Visscher, Lucas 19 June 2018 (has links)
We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner’s group, very good agreement with TD-DFT calculations using local functionals was achieved.
14

Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles

Wen, Dan, Liu, Wei, Herrmann, Anne-Kristin, Haubold, Danny, Holzschuh, Matthias, Simon, Frank, Eychmüller, Alexander 21 November 2016 (has links)
A controlled assembly of natural beta-cyclodextrin modified Au NPs mediated by dopamine is demonstrated. Furthermore, a simple and sensitive colorimetric detection for dopamine is established by the concentration-dependent assembly.
15

Enzymatic Biofuel Cells on Porous Nanostructures

Wen, Dan, Eychmüller, Alexander January 2016 (has links)
Biofuel cells (BFCs) that utilize enzymes as catalysts represent a new sustainable and renewable energy technology. Numerous efforts have been directed to improve the performance of the enzymatic BFCs (EBFCs) with respect to power output and operational stability for further applications in portable power sources, self-powered electrochemical sensing, implantable medical devices, etc. This concept article details the latest advances about the EBFCs based on porous nanoarchitectures over the past 5 years. Porous matrices from carbon, noble metal, and polymer promote the development of EBFCs through the electron transfer and mass transport benefits. We will also discuss some key issues on how these nanostructured porous media improve the performance of EBFCs in the end.
16

Hydrogen Storage In Nanostructured Materials

Assfour, Bassem 28 February 2011 (has links)
Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn 2+) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its total hydrogen uptake at 77 K and 100 bar amounts to 7.8 wt.% comparable to the total uptake reported of MOF-177 (10 wt.%), which is a benchmark material for high pressure and low temperature H2 adsorption. Covalent organic frameworks are new class of nanoporous materials constructed solely from light elements (C, H, B, and O). The number of adsorption sites as well as the strength of adsorption are essential prerequisites for hydrogen storage in porous materials because they determine the storage capacity and the operational conditions. Currently, to the best of our knowledge, no experimental data are available on the position of preferential H2 adsorption sites in COFs. Molecular dynamics simulations were applied to determine the position of preferential hydrogen sites in COFs. Our results demonstrate that H2 molecule adsorbed at low temperature in seven different adsorption sites in COFs. The calculated adsorption energies are about 3 kJ/mol, comparable to that found for MOF systems. The gravimetric uptake for COF-108 reached 4.17 wt.% at room temperature and 100 bar, which makes this class of materials promising for hydrogen storage applications.
17

Tellurringe als Elektronenpaardonoren in Clusterverbindungen und Koordinationspolymeren

Günther, Anja 08 November 2011 (has links)
Durch diese Arbeit konnten einerseits neuartige sowie bereits bekannte molekulare Tellurringe in Clusterverbindungen und quasi-eindimensionalen Koordinationspolymeren erhalten werden. Die Stabilisierung der zyklischen, homonuklearen Einheiten erfolgt dabei stets durch die Koordination an elektronenreiche Übergangsmetallatome, wobei die koordinierenden Telluratome gegenüber diesen als Zwei-Elektronendonoren fungieren. Die molekularen Clusterverbindungen [M(Te10)](TeX4)2(TeX3)2 (M = Rh, Ir X = Cl, Br) sowie [Ru2(Te10)](TeI4)2(TeI2)2 beinhalten eine übergangsmetallstabilisierte, neutrale Te10-Einheit, wobei jedes Übergangsmetallatom zusätzlich zwei terminale Halogenidotelluratliganden koordiniert. Im neuartigen, zehngliedrigen (Te04Te+0,54Te2)-Fragment finden sich zwei nahezu linear umgebende Telluratome, die als "Tellurbrücke", zwei gefaltete Te4-Ringe zur Vervollständigung der tricyclo[5.1.1.13;5]-Einheit koordinieren. Die Bindungssituation der nahezu linearen Te3-Sequenzen im homonuklearen Fragment sowie die [X-Te-X]-Sequenzen der Halogenidotelluratliganden lassen sich mit 3c4e-Bindungen verstehen. Anhand quantenchemischer Rechnungen konnte die Mehrzentrenbindung sowie die Aussage eines übergangsmetallstabilisierten Fragments bestätigt werden. In den inkommensurabel modulierten Kristallstrukturen (M2Te14I12)(TeI4) Te2I2) (M = Rh, Ir) existieren hingegen zweifach positiv geladene (M2Te14I12)2+-Cluster (M = Rh, Ir) neben nahezu planaren Schichten bestehend aus (TeI4)2--Gruppen und (Te2I2) Molekülen. Das (Te+I2I2) Molekül konnte anhand quantenchemischer Rechnungen als stabiles Molekül in der Gasphase bestätigt werden und stellt ein schweres Homologes des S2Cl2 dar. Die quaternäre Verbindung (Ir2Te14Br12)2(InBr4)2 enthält ebenfalls einen zweifach positiv geladenen Cluster, {[Ir3+2(Te0)4(Te+0,5)4(Te-)2]Te2+2Br-6)2}2+, dessen Ladung durch zwei einfach negativ geladene (In3+Br4)--Gruppen ausgeglichen wird sowie einem neutralen Cluster, [Ir3+2(Te0)4(Te3.-)2](Te2+2Br-6)2, mit einem Te3.--Radikalanion, dessen Existenz mittels ESR-Spektroskopie nachgewiesen wurde. Die aus diskreten Molekülen aufgebaute Verbindung [Ru2(Te6)]TeBr3)4(TeBr2)2 kann je nach Betrachtungsweise entweder als Te6-Ring, der durch zwei (Ru2+Te2+3Br-8)-Kappen umgeben ist oder als [Ru2Te6]4+-Heterokuban, welcher zusätzlich mit Bromidotelluratliganden koordiniert ist, beschrieben werden. In den Kristallstrukturen der ternären Koordinationspolymere [M(Te6)]X3 (M = Rh, Ir; X = Cl, Br, I) verlaufen entlang der c-Achse lineare, positiv geladene [M(Te6)]3+-Ketten (M = Rh,Ir), in denen abwechselnd ein ektronenreiches Übergangsmetallatom und sechsgliedrige Tellurringe koordinativ gebunden sind, wodurch eine hoch symmetrische Anordnung realisiert wird. Dabei zeigt sich aufgrund der starken Bindung an die Übergangsmetallatome eine erhebliche Ringspannung im Vergleich zu den bekannten sechsgliedrigen Tellureinheiten. Isolierte Halogenidionen, welche sich in der Ebene der Übergangsmetallatome befinden, dienen einerseits zum Ladungsausgleich der positiv geladenen Ketten und verbrücken andererseits innerhalb eines Stranges benachbarte Te6-Ringe. Im Koordinationspolymer [Ru(Te8)]Cl2 konnte ein neutraler Te8-Ring mit einer bislang für achtgliedrige Chalkogenmoleküle unbekannten Konformation röntgenographisch nachgewiesen werden. Die Abweichung von der bevorzugten Kronenform, ist wiederum ein E ekt der starken Bindung zwischen den Telluratomen und den Rutheniumatomen. In den linearen, positiv geladenen [Ru(Te8)]2+-Strängen binden 3+3 Telluratome an zwei benachbarte Rutheniumatome. Isolierte Chlorid-Ionen, die zwischen den positiven Strängen eingelagert sind, dienen in der Kristallstruktur zum Ladungsausgleich. Das quaternäre Koordinationspolymer [Ru(Te9)](InCl4)2 beinhaltet eine neuartige, zyklische Te9-Einheit, welche die Vielfalt der tellurreichen Ringstrukturen erweitert. Analog zum ternären Koordinationspolymer [Ru(Te8)]Cl2 gliedert sich die Kristallstruktur in [Ru(Te9)]2+-Stränge, die entlang der c-Achse verlaufen, und dem komplexen Anion (InCl4)-. Ein besonders interessantes Strukturmerkmal der positiv geladenen Stränge stellt das käfigartige Fragment [Ru-(Te9)-Ru] dar, dessen hexazyklischer Aufbau aus kondensierten Fünfringen den isolierten Undecapniktiden Pn113- (Pn = P, As, Sb) topologisch äquivalent ist. Für einen genaueren Einblick in die chemische Bindung der tellurreichen Koordinationspolymere [Rh(Te6)]Cl3, [Ru(Te8)]Cl2 und [Ru(Te9)](InCl4)2 wurden quantenchemische Rechnungen durchgeführt. Eine topologische Analyse der Elektronendichte und des Elektronenlokalisierbarkeitsindikators (ELI-D) an koordinierenden und freien Tellurmolekülen sollte zu detaillierten Aussagen über Gründe der extremen Ringspannung aufgrund der Koordination führen. Zusammenfassend kann feststellt werden, dass die Verzerrung der Tellurringe in den Koordinationspolymeren einerseits der gerichteten Bindung zu den Übergangsmetallatomen geschuldet ist und andererseits um Platz für die sich abstoßenden freien Elektronenpaare zu bekommen. Für weitere Arbeiten könnten zunächst einerseits die Untersuchungen zur Löslichkeit der Clusterverbindung Re4Q4(TeCl2)4Cl8 (Q = S, Se, Te) in organischen Lösungsmitteln als Ausgangspunkt für die Austauschreaktionen der terminalen Halogenidotelluratliganden durch neue verbrückenden Gruppen von Interesse sein. Andererseits kann auch innerhalb des untersuchten Systems, durch Variation der Eduktzusammensetzung, neuartige Tellurmoleküle erwartet sowie die bereits erworbenen Erkenntnisse zur Übertragung auf das leichtere Homologon Selen genutzt werden.
18

Metallocen-katalysierte Synthese von polaren Olefin-basierten Makromonomeren

Johannsen, Matthias 28 November 2011 (has links)
1 Ziel und Gegenstand der Untersuchungen Gegenstand der vorliegenden Arbeit war die Synthese und Charakterisierung von polaren Olefin-basierten Makromonomeren mit Hilfe von Metallocen-Katalysatoren. Polyolefine stellen eine Gruppe von Polymeren dar, die durch Additive oder chemische Veränderungen modifiziert, eine große Vielfalt von Einsatzmöglichkeiten auf der Basis einfach aufgebauter Monomere bieten. Sie stellen deshalb heutzutage die wichtigste Kunststoffgruppe dar. Ein Nachteil ist jedoch die unpolare Struktur dieser Polymere. Ziel dieser Arbeit war die Homopolymerisation polarer Olefine, um ein funktionalisiertes Polyolefin zu erzeugen, dass zudem auch als Makromonomer einsetzbar ist. Als Katalysatoren wurden im Wesentlichen die klassischen Metallocene auf Zr-Basis eingesetzt, aktiviert mit MAO. Die Makromonomere wurden im Anschluss an die Synthese umfassend charakterisiert. 2 Ergebnisse Zur Synthese wurde das bekannte 10-Undecen-1-ol (Undecenol) eingesetzt. Für eine erfolgreiche Homopolymerisation dieses Monomers ist eine effektive Abschirmung des Katalysators gegenüber der polaren Gruppe zur Minimierung der Deaktivierung des Katalysators zu gewährleisten. Für die Einführung von Schutzgruppen fand Triisobutylaluminium (TIBA) Verwendung. Auf diese Weise konnte erstmalig erfolgreich die Synthese von Polyundecenol mit Metallocen-Katalysatoren durchgeführt werden. Es zeigte sich, dass Undecenol als polares und zugleich sterisch anspruchsvolles Monomer mit der überwiegenden Anzahl der eingesetzten Metallocene schwierig zu polymerisieren ist, was im Vergleich zur Polymerisation von kurzkettigen 1 Olefinen, wie zum Beispiel Propen, anhand von geringen Molmassen (< 2000 g/mol) aber auch geringen Ausbeuten zum Ausdruck kommt. Die erzielten Molmassen der Polyundecenole sind jedoch für die Verwendung als Makromonomer vorteilhaft. Die höchsten Polymerausbeuten ermöglichte der Einsatz von ansa-Metallocenen. Mit dem Katalysator Et[Ind]2ZrCl2 konnten hierbei relative Ausbeuten im Bereich von 50 % bis 60 % bei gleichzeitig geeigneten Molmassen von < 10^4 g/mol erzielt werden. Bei der Verwendung von unverbrückten Metallocenen (bis-Cyclopentadienylkomplexe) sind die Ausbeuten und Molmassen im Vergleich zu den ansa-Metallocenen deutlich reduziert. Die synthetisierten Polyundecenole wurden hinsichtlich ihres Schmelz- und Kristallisationsverhaltens sowie der kristallinen Struktur untersucht und der Zusammenhang mit der Taktizität und der Molmasse der Polymere hergestellt. Die Ergebnisse der DSC und WAXS Untersuchungen lassen darauf schließen, dass für ataktische und isotaktische Polyundecenole eine Seitenkettenkristallisation als primäre Form der Kristallisation vorliegt. Aufgrund des hohen Gehalts von Hydroxylgruppen, die durch Wasserstoffbrückenbindungen wechselwirken, weist Polyundecenol hohe Schmelztemperaturen auf, im Vergleich mit dem unpolaren Poly(1-Undecen). So besitzt isotaktisches und auch ataktisches Polyundecenol bei vergleichbaren Molmassen eine um rund 80 K höhere Schmelztemperatur als Poly(1-Undecen). Die Wechselwirkung der Hydroxylgruppen wurde mittels FTIR-Spektroskopie nachgewiesen und liegt auch im geschmolzenen Zustand der Polymere vor. Anhand der Ergebnisse von WAXS-Untersuchungen konnte gezeigt werden, dass Polyundecenol in smektischen Schichten kristallisiert. Der Abstand zwischen den Hauptketten entspricht etwa zwei vollständig gestreckten Seitenketten des Polymers, welche orthogonal zur Hauptkette angeordnet sind. Diese Schicht-Anordnung wurde unabhängig von Molmasse und Taktizität der Polymere nachgewiesen und lässt die Schlussfolgerung zu, dass die Kristallisation isotaktischer Rückgrat-Ketten gegenüber der Seitenketten-Kristallisation unterdrückt ist. Es wurde jedoch beobachtet, dass die Taktizität einen Einfluss auf die Kristallisation hat. Polyundecenole mit isotaktischer Hauptkette weisen bei entsprechend langsamer Kristallisation eine Anordnung der Seitenketten in einer monoklinen Packung auf, was als Hinweis auf eine Kristallisation der Hauptkette interpretiert wird, auch wenn diese im Rahmen der Arbeit nicht eindeutig nachgewiesen werden konnte. Bei Polyundecenolen mit ataktischer Hauptkette ordnen sich die Seitenketten hingegen in einer hexagonalen Packung an, da die Hauptkette nicht in der Lage ist zu kristallisieren. Von besonderer Bedeutung für die Synthese der Polyundecenole waren einerseits die erzielbaren Polymerausbeuten, andererseits aber auch die Einführung geeigneter Endgruppen, welche ausschlaggebend sind für eine Nutzung als Makromonomer. Die Untersuchungen zum Polymerisationsverhalten verschiedener Metallocen-Katalysatoren zeigten, dass im Falle von ansa-Metallocenen sowie einem "CGC"-Komplex Polymere erhalten werden, die vor allem Endgruppen mit internen Doppelbindungen, doppelt- und dreifachsubstituiert, aufweisen. Solche Endgruppen sind jedoch für einen späteren Einsatz der Polymere als Makromonomer ungeeignet. Der Einsatz von unverbrückten Metallocen-Katalysatoren auf Basis der Biscyclopentadienyl-Struktur ermöglicht hingegen die Synthese von Polyundecenol mit einem hohen Anteil endständiger Vinyliden-Endgruppen zu synthetisieren. Die so erreichten Vinyliden-Endgruppenanteile bewegten sich nahezu unabhängig vom Katalysator im Bereich von etwa 85 % bis 90 %. Ein wesentliches Ergebnis der Arbeit stellt die Synthese von Polyundecenol mit Allyl-Endgruppen dar. Dieses wurde durch gezielte Kettenabbruchreaktionen mit Hilfe von Vinylchlorid erreicht. Bei Einsatz des Katalysator MBI konnten Anteile der favorisierten Allyl-Endgruppe von rund 90 % erreicht werden. Somit wurden auf diesem Wege erstmalig erfolgreich Polyundecenol-Makromonomere synthetisiert. Ein Einsatz dieser Polymere in der Copolymerisation mit Propen wurde aber durch geringe Ausbeuten verhindert. Jedoch konnte gezeigt werden, dass der Einsatz von Vinylchlorid die Synthese von Polyundecenol-Makromonomeren ermöglicht.
19

Low-temperature binding of NO adsorbed on MIL-100(Al)-A case study for the application of high resolution pulsed EPR methods and DFT calculations

Mendt, Matthias, Barth, Benjamin, Hartmann, Martin, Pöppl, Andreas 23 May 2018 (has links)
The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27Al atom and all its relevant 14N and 27Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.
20

The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

Savchenko, Dariya, Shanina, Bela, Kalabukhova, E., Pöppl, Andreas, Lancok, J., Mokhov, Evgeny 23 May 2018 (has links)
We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation “sandwich method” (SSM) with a donor concentration of about 10 17cm-3 at T=10–40K. The donor electrons of the N donors substituting quasi-cubic “k1” and “k2” sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1 -1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1 -1 for the donor electrons of N substituting hexagonal (“h”) site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm -1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

Page generated in 0.1611 seconds