Spelling suggestions: "subject:"info:entrepo/classification/ddc/572"" "subject:"info:restrepo/classification/ddc/572""
41 |
Spektroskopische Untersuchungen zur Komplexbildung von Cm(III) und Eu(III) mit organischen Modellliganden sowie ihrer chemischen Bindungsform in menschlichem Urin (in vitro)Heller, Anne 17 June 2011 (has links)
Dreiwertige Actinide (An(III)) und Lanthanide (Ln(III)) stellen im Falle ihrer Inkorporation eine ernste Gefahr für die Gesundheit des Menschen dar. An(III) sind künstlich erzeugte, stark radioaktive Elemente, die insbesondere bei der nuklearen Energiegewinnung in Kernkraftwerken entstehen. Durch Störfälle oder nicht fachgerechte Lagerung radioaktiven Abfalls können sie in die Umwelt und die Nahrungskette des Menschen gelangen. Ln(III) sind hingegen nicht radioaktive Elemente, die natürlicherweise vorkommen und für vielfältige Anwendungen in Technik und Medizin abgebaut werden. Folglich kann der Mensch sowohl mit An(III) als auch Ln(III) in Kontakt kommen bzw. sie inkorporieren. Es ist daher von enormer Wichtigkeit, das Verhalten dieser Elemente im menschlichen Körper aufzuklären. Während makroskopische Vorgänge wie Verteilung, Anreicherung und Ausscheidung bereits sehr gut untersucht sind, ist das Wissen hinsichtlich der chemischen Bindungsform (Speziation) von An(III) und Ln(III) in Körperflüssigkeiten noch sehr lückenhaft.
In der vorliegenden Arbeit wurde daher erstmals die chemische Bindungsform von Cm(III) und Eu(III) in natürlichem menschlichem Urin (in vitro) spektroskopisch aufgeklärt und die gebildeten Komplexe identifiziert. Hierzu wurden auch grundlegende Untersuchungen zur Komplexierung von Cm(III) und Eu(III) in synthetischem Modellurin sowie mit den urinrelevanten organischen Modellliganden Harnstoff, Alanin, Phenylalanin, Threonin und Citrat durchgeführt und die noch unbekannten Komplexbildungskonstanten bestimmt. Abschließend wurden alle experimentellen Ergebnisse mit Literaturdaten und Vorherberechnungen mittels thermodynamischer Modellierung verglichen. Auf Grund der hervorragenden Lumineszenzeigenschaften von Cm(III) und Eu(III) konnte insbesondere auch die Eignung der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie (TRLFS) als Methode zur Untersuchung dieser Metallionen in unbehandelten, komplexen biologischen Flüssigkeiten demonstriert werden.
Die Ergebnisse dieser Arbeit liefern damit neue Erkenntnisse zu den biochemischen Reaktionen von An(III) und Ln(III) in Körperflüssigkeiten auf molekularer Ebene und tragen zu einem besseren Verständnis der bekannten, makroskopischen Effekte dieser Elemente bei. Darüber hinaus sind sie die Grundlage weiterführender in-vivo-Untersuchungen.:1 Motivation und Zielstellung
2 Speziationsbestimmung exogener Schwermetalle in Biofluiden
2.1 Actinide und Lanthanide
2.2 Biochemisches Verhalten exogener Schwermetalle im Menschen
2.3 Speziationsbestimmung von Metallen
3 Komplexbildung von Curium(III) und Europium(III) mit organischen Modellliganden
3.1 Lumineszenzspektroskopische Eigenschaften von Curium(III) und Europium(III) in Wasser
3.2 Harnstoff – Hauptbestandteil des menschlichen Urins
3.3 Citronensäure – ubiquitäres Biomolekül0
3.4 Aminosäuren – Grundbausteine des Lebens
4 Speziation von Curium(III) und Europium(III) in menschlichen Urinproben
4.1 Charakterisierung und Analyse der natürlichen menschlichen Urinproben
4.2 Bestimmung der Speziation von Curium(III) und Europium(III) in Modellurin
4.3 Bestimmung der Speziation von Curium(III) und Europium(III) in menschlichem Urin
5 Diskussion
5.1 Vergleich der Komplexbildungseigenschaften von Curium(III) und Europium(III)
5.2 Thermodynamische Modellierung der Speziation von Curium(III) und Europium(III) in menschlichem Urin
5.3 Ausblick
6 Experimentelles / In case of incorporation, trivalent actinides (An(III)) and lanthanides (Ln(III)) pose a serious health risk to humans. An(III) are artificial, highly radioactive elements which are mainly produced during the nuclear fuel cycle in nuclear power plants. Via hazardous accidents or nonprofessional storage of radioactive waste, they can be released in the environment and enter the human food chain. In contrast, Ln(III) are nonradioactive, naturally occurring elements with multiple applications in technique and medicine. Consequently it is possible that humans get in contact and incorporate both, An(III) and Ln(III). Therefore, it is of particular importance to elucidate the behaviour of these elements in the human body. While macroscopic processes such as distribution, accumulation and excretion are studied quite well, knowledge about the chemical binding form (speciation) of An(III) and Ln(III) in various body fluids is still sparse.
In the present work, for the first time, the speciation of Cm(III) and Eu(III) in natural human urine (in vitro) has been investigated spectroscopically and the formed complex identified. For this purpose, also basic investigations on the complex formation of Cm(III) and Eu(III) in synthetic model urine as well as with the urinary relevant, organic model ligands urea, alanine, phenylalanine, threonine and citrate have been performed and the previously unknown complex stability constants determined. Finally, all experimental results were compared to literature data and predictions calculated by thermodynamic modelling. Since both, Cm(III) and Eu(III), exhibit unique luminescence properties, particularly the suitability of time-resolved laser-induced fluorescence spectroscopy (TRLFS) could be demonstrated as a method to investigate these metal ions in untreated, complex biofluids.
The results of this work provide new scientific findings on the biochemical reactions of An(III) and Ln(III) in human body fluids on a molecular scale and contribute to a better understanding of the known macroscopic effects of these elements. Furthermore, they are the basis of subsequent in vivo investigations.:1 Motivation und Zielstellung
2 Speziationsbestimmung exogener Schwermetalle in Biofluiden
2.1 Actinide und Lanthanide
2.2 Biochemisches Verhalten exogener Schwermetalle im Menschen
2.3 Speziationsbestimmung von Metallen
3 Komplexbildung von Curium(III) und Europium(III) mit organischen Modellliganden
3.1 Lumineszenzspektroskopische Eigenschaften von Curium(III) und Europium(III) in Wasser
3.2 Harnstoff – Hauptbestandteil des menschlichen Urins
3.3 Citronensäure – ubiquitäres Biomolekül0
3.4 Aminosäuren – Grundbausteine des Lebens
4 Speziation von Curium(III) und Europium(III) in menschlichen Urinproben
4.1 Charakterisierung und Analyse der natürlichen menschlichen Urinproben
4.2 Bestimmung der Speziation von Curium(III) und Europium(III) in Modellurin
4.3 Bestimmung der Speziation von Curium(III) und Europium(III) in menschlichem Urin
5 Diskussion
5.1 Vergleich der Komplexbildungseigenschaften von Curium(III) und Europium(III)
5.2 Thermodynamische Modellierung der Speziation von Curium(III) und Europium(III) in menschlichem Urin
5.3 Ausblick
6 Experimentelles
|
42 |
Die Agonistspezifität des G-Protein-gekoppelten Rezeptors GPR34Ritscher, Lars 10 October 2012 (has links)
In der vorliegenden Arbeit wurden die molekularen Grundlagen für die Agonistspezifität des G-Protein-gekoppelten Rezeptors GPR34 untersucht. Mittels verschiedener funktioneller Versuche konnte an ausgewählten Orthologen des Rezeptors gezeigt werden, dass, im Gegensatz zu publizierten Daten, Lysophosphatidylserin (Lyso-PS) nicht der natürliche Agonist des GPR34 ist. Lediglich an einigen cyprinoiden Subtypen des GPR34 hat Lyso-PS surrogat-agonistische Effekte. Anhand eines detaillierten evolutionären Vergleichs von Orthologen konnten Bereiche des Rezeptors ermittelt werden, welche an der Ligandenbindung, und damit an der Agonistspezifität des GPR34 beteiligt sind. Durch Übertragung dieser Bereiche vom Karpfen-GPR34-Subtyp 2a auf den humanen GPR34 konnte dieser zu einem Lyso-PS-sensitiven Rezeptor modelliert werden.
Weiterhin wurde Aminoethyl-Carbamoyl-ATP (EDA-ATP) als inverser Agonist an cyprinoiden Orthologen des GPR34 identifiziert. Die Erweiterung des möglichen Ligandenspektrums von Lipiden zu Nukleotidderivaten gibt Hinweise auf die
Promiskuität der Bindungsstelle des GPR34.
Die Ergebnisse zeigen, dass Lyso-PS nur eine zufällige Aktivität an einigen Orthologen des GPR34 hat. Mit Identifizierung eines Nichtlipides als invers-agonistischen Liganden ist die Suche nach dem natürlichen Liganden des GPR34 noch nicht abgeschlossen und sollte auf weitere chemische Entitäten ausgeweitet werden. / Lyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated. Using chimaeras we identified single positions in the second extracellular loop and the transmembrane helix 5 of carp subtype 2a that, if transferred to the human orthologue, enabled lyso-PS to activate the human GPR34. Significant improvement of agonist efficacy by changing only a few positions strongly argues against the hypothesis that nature optimized GPR34 as the receptor for lyso-PS. Phylogenetic analysis revealed several positions in some fish GPR34 orthologues which are under positive selection. These structural changes may indicate functional specification of these orthologues which can explain the species- and subtype-specific pharmacology of lyso-PS. Furthermore, we identified aminoethyl-carbamoyl ATP as an antagonist of carp GPR34, indicating ligand promiscuity with non-lipid compounds. The results of the present study suggest that lyso-PS has only a random agonistic activity at some GPR34 orthologues and the search for the endogenous agonist should consider additional chemical entities.
|
43 |
Experimentelle und theoretische Untersuchungen zur Modifizierung der Substratspezifität einer Amin-Pyruvat-AminotransferaseSeidel, Christian 08 March 2013 (has links)
Mit Aminotransferasen können chirale Amine auf biotechnologischem Weg hergestellt werden. Diese besitzen große Bedeutung als Bausteine für weitere Synthesen in der pharmazeutischen und agrochemischen Industrie. Da natürlich vorkommende Enzyme oft nicht die gewünschte Substratspezifität für bestimmte industrielle Anwendungen besitzen, ist eine Optimierung durch Mutagenese notwendig. Solche Entwicklungen sind jedoch oft mit hohem Zeit- und Kostenaufwand verbunden. Die Optimierung kann entweder ungezielt durch empirische Methoden oder gezielt unter Einbeziehung von Informationen über das Enzym erfolgen. Die notwendigen Daten können als Vorbereitung zu konkreten Produktentwicklungen durch Untersuchungen an potentiell geeigneten Enzymen gewonnen werden. Um einen solchen rationalen Ansatz bei der einer speziellen Amin-Pyruvat-Aminotransferase zu ermöglichen, war es Ziel der vorliegenden Arbeit die Grundlagen für die Veränderung der Substratspezifität dieses Enzyms zu erarbeiten.
Zunächst wurden strukturelle Informationen durch ein Homologie-Modell gewonnen und später durch eine experimentell bestimmte Struktur ergänzt. Mit dieser Struktur wurden die Substrat-bindenden Reste identifiziert und zunächst der Einfluss auf die Substratbindung durch ortsgerichtete Mutagenese überprüft. Es konnte gezeigt werden, dass alle acht ausgewählten Aminosäurereste an der Substratbindung beteiligt sind. Zudem wurde unter diesen Positionen nach Mutanten gesucht, die neue Substrate umsetzen können. Eine Reihe von Mutanten wurde identifiziert, die verschiedene neue Substrate umsetzen. Für zwei Positionen konnten eine Reihe von Mutanten identifiziert werden, die neue Substrate akzeptieren. Durch die Art der Seitenketten, die Position der Aminosäuren und der chemischen Struktur der akzeptierten Substrate konnten eine Reihe von Aussagen über den Mechanismus der Substratbindung für diese Amin-Pyruvat-Aminotransferase gemacht werden. Außerdem wurde die Zweckmäßigkeit der eingesetzten theoretischen und experimentellen Methoden für die Anwendung bei Entwicklungen mit Enzymen dieser Klasse gezeigt.
|
Page generated in 0.104 seconds