• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 14
  • 2
  • Tagged with
  • 88
  • 88
  • 88
  • 88
  • 88
  • 66
  • 34
  • 24
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Aufbau regionaler Gewässerunterhaltungskompetenz: Pilotvorhaben „Aufbau einer regionalen Gewässerunterhaltungskompetenz am Beispiel der LEADER Region Leipziger Muldenland“

Salim, Jana, Stowasser, Andreas, Bromberger, Susann 28 November 2023 (has links)
Die Veröffentlichung fasst die Ergebnisse der Pilotstudie zur Stärkung der kommunalen Fachkompetenz für eine naturnähere Gewässerunterhaltung zusammen. Es zeigte sich eine hohe Bereitschaft der Mitarbeiterinnen und Mitarbeiter der kommunalen Verwaltung, eine naturnahe Gewässerunterhaltung umzusetzen. Durch die kontinuierliche Zusammenarbeit mit dem Regionalkoordinator vom Deutschen Verband für Landschaftspflege und einem kompetenten Ingenieurbüro konnten interkommunale Netzwerkstrukturen geschaffen werden. Problematisch sind unzureichende Finanz- und Personalkapazitäten, die geringe Priorität der Gewässerunterhaltung bei den kommunalen Gesamtaufgaben sowie teilweise fehlende Akzeptanz bei Anliegern für naturnahe Unterhaltungsmaßnahmen. Die Veröffentlichung richtet sich an kommunale sowie freistaatliche Entscheidungsträger. Sie soll als Gedankenanstoß für erforderliche Veränderungsprozesse bei der zukünftigen Organisation und fachlich-inhaltlichen Ausgestaltung der Gewässerunterhaltung verstanden werden. Redaktionsschluss: 23.03.2023
82

Polder Löbnitz - Hochwasserschutz für die Anlieger der Vereinigten Mulde

21 December 2022 (has links)
In dieser Bürgerinformation erfahren Sie, warum der Polder Löbnitz (Nordsachsen) notwendig ist, welche Baumaßnahmen zum Projekt gehören, welche schon fertig sind und wie ein Polder funktioniert. Redaktionsschluss: 28.02.2019
83

Trinkwasser aus Sachsen

03 January 2023 (has links)
Viele Menschen arbeiten daran, dass immer ausreichend Trinkwasser in der bestmöglichen Qualität und zu sozialverträglichen Preisen zur Verfügung steht. Die Landestalsperrenverwaltung steht ganz am Anfang der Kette. Der Staatsbetrieb speichert Oberflächenwasser und gibt es als Rohwasser an Wasserwerke ab. Redaktionsschluss: 31.05.2016
84

A Decentralized Solution for Sewer Leakage Detection

Sadeghikhah, Afshin 11 April 2024 (has links)
Undichte Abwassersysteme sind in unserer urbanisierten Welt allgegenwärtig, und aufgrund ihrer versteckten Infrastruktur und der schwierigen Überwachung bleiben ihre Leckagen oft in der Anfangsphase unbemerkt. Trotz der umfangreichen technologischen Entwicklung bei den Kanalinspektionsmethoden und den dazugehörigen Techniken ist die Überwachung von Abwasserkanälen auf städtischer Ebene nach wie vor kostspielig und schwierig. Daher werden ein Empfehlungsverfahren und eine Methodenklassifizierung benötigt, um einen nachhaltigen und kosteneffizienten Kanalinspektionsplan auf Stadtebene zu erstellen. In diesem Zusammenhang kann diese Studie im Wesentlichen in drei Teile gegliedert werden. Zunächst wurde eine umfassende Literaturstudie zu den verfügbaren Kanalinspektionsmethoden durchgeführt, um ein umfassenderes Verständnis für deren Wirkungsbereich und technischen Grad zu erhalten. Darüber hinaus wurden diese Inspektionsmethoden auf der Grundlage ihres Wirkungsbereichs in drei Stufen eingeteilt, wobei Stufe 1 die Methoden mit dem größten Wirkungsbereich umfasst, wie z. B. die Verschlechterungsmodellierung, die ein umfassendes und dennoch zuverlässiges Verständnis der Integrität des Abwassersystems ermöglicht. Stufe 2 bietet intermediäre Inspektionsmethoden wie Wärmebildaufnahmen aus der Luft und geoelektrische Inspektionstechniken, die eine zerstörungsfreie Inspektion, der von Stufe 1 vorgeschlagenen Bereiche ermöglichen. Bei den Methoden der Stufe 3 handelt es sich in erster Linie um Inspektionstechniken in der Rohrleitung, die häufig eine Rohrentwässerung erfordern und im Gegenzug für eine hohe Erkennungsgenauigkeit kostspielig zu implementieren sind. Zweitens wurde als Beitrag zu den Tier-1-Methoden das Vulnerability Hotspot Mapping entwickelt, ein GIS-gestütztes Modell, das die am häufigsten von den Entleerungsmodellen verwendeten Faktoren berücksichtigt und Bereiche des Abwassersystems anbietet, die besonders anfällig für Leckagen sind. Die Validierungs- und Sensitivitätsanalysen ergaben, dass die Fließgeschwindigkeit, das Rohralter und die Oberflächenvegetation die sinnvollsten Faktoren für das Modell sind. Darüber hinaus ergab das lineare Modell einen Wirkungsgrad von 76 % und einen mittleren quadratischen Fehler von 0,918, während es durch den Random-Forest-Algorithmus mit 400 Bäumen verbessert wurde, was auf das Potenzial der Schwachstellen-Kartierung als frühzeitige Methode zur Kanalinspektion auf Stadtebene hinweist. Drittens wurden die Tier-2-Methoden aktualisiert, indem das Potenzial der elektrischen Widerstandstomographie und der Mise-la-masse-Techniken als geoelektrische und zerstörungsfreie Methoden hervorgehoben wurde, die experimentell in einem Holzrahmen mit einer Matrix aus Sensoren und Elektroden getestet wurden. Der Versuchsbehälter besteht aus drei Schichten von Elektroden in gesättigten und ungesättigten Zonen, in denen verschiedene Leckageszenarien durchgeführt wurden, um die Sichtbarkeit von Leckagen mit diesen Methoden zu untersuchen. Trotz der Fähigkeit dieser Methoden zur Leckageerkennung wurde festgestellt, dass die elektrische Widerstandstomographie eine höhere Leckageerkennungsempfindlichkeit als die Mise à la masse hat, während sie eine geringere Flexibilität bietet, was ein wichtiger Punkt bei der Methodenauswahl ist. Darüber hinaus wurde festgestellt, dass Mise à-la-masse empfindlicher auf das Vorhandensein von Leckagen reagiert als auf Feuchtigkeits- und Temperaturschwankungen, was zu einem Pearson's r und R2 von 0,8 bzw. 0,7 im Vergleich zu den während der Leckageszenarien gesammelten Daten führte. Insgesamt schlägt diese Studie vor, dass mindestens zwei (vorzugsweise drei) Inspektionstechniken, die zu verschiedenen Ebenen gehören, eingesetzt werden sollten, um einen nachhaltigen Inspektionsplan auf Stadtebene zu haben. Der vorgeschlagene Ansatz hilft dabei, ein Gleichgewicht zwischen Kosten und Präzision sowie ein Gleichgewicht zwischen Zeit und Einwirkungsbereich herzustellen, was einen dezentralisierten und nachhaltigen Inspektionsplan ermöglicht.:List of Abbreviations .......................................................................................... IX List of Peer-Reviewed Publications on the Ph.D. Topic .................................. X List of Co-authored Peer-Reviewed Publications on the Ph.D. Topic ............ X 1 General Introduction........................................................................... 1 1.1 Background ....................................................................................................... 1 1.2 Aim and Objectives .......................................................................................... 3 1.3 Structure of the Document ............................................................................. 3 2 Towards a Decentralized Solution for Sewer Leakage Detection .............................................................................................. 8 2.1 Introduction ...................................................................................................... 10 2.2 Sewer inspection methods (SIMs) overview ................................................. 11 2.2.1 Tier-one (T-I) ................................................................................................................. 11 Deterioration models ....................................................................................................... 12 Hotspot mapping .............................................................................................................. 14 2.2.2 Tier-two (T-II) methods ............................................................................................... 15 Aerial thermal imaging (ATI) ............................................................................................ 15 Ground penetration radar (GPR) .................................................................................... 16 Electrical resistivity tomography (ERT) ........................................................................... 17 Mise-à-la-masse method (MLM)...................................................................................... 18 Soil Sampling ..................................................................................................................... 18 2.2.3 Tier-three (T-III) methods ........................................................................................... 20 General approaches ......................................................................................................... 20 Laser scanning ................................................................................................................... 21 Visual inspection ............................................................................................................... 21 Acoustic methods ............................................................................................................. 22 Ultrasonic inspection ........................................................................................................ 24 Multi-sensor robots .......................................................................................................... 24 Electromagnetic Inspection ............................................................................................. 26 Thermography Inspection ............................................................................................... 26 Tracer Test ......................................................................................................................... 27 VII 2.3 Discussion.......................................................................................................... 30 2.4 Conclusion and outlook ................................................................................... 33 2.5 References ......................................................................................................... 34 3 Vulnerability Hotspot Mapping (VHM) of Sewer Pipes based on Deterioration Factors .................................................................... 42 3.1 Introduction ...................................................................................................... 43 3.2 Materials and Methods.................................................................................... 44 3.2.1 Overview of the sewer deterioration factors. .......................................................... 45 Pipe Age .............................................................................................................................. 46 Pipe Material ...................................................................................................................... 47 Sewer Type ......................................................................................................................... 48 Flow Velocity ...................................................................................................................... 48 Node Degree...................................................................................................................... 49 Surface Vegetation ............................................................................................................ 50 Criticality class and weighting matrix ............................................................................. 50 3.3 Case study ......................................................................................................... 52 3.4 Results and discussions ................................................................................... 54 3.4.1 Network assessment .................................................................................................. 54 3.4.2 Validation and sensitivity analysis ............................................................................ 56 3.5 Summary and conclusion ................................................................................ 61 3.6 Reference........................................................................................................... 63 4 Laboratory Application of the Mise-à-la-Masse (MALM) for Sewer Leakage Detection as an intermediary inspection method. ................................................................................................ 67 4.1 Introduction ...................................................................................................... 68 4.2 Methodology ..................................................................................................... 70 4.2.1 Mise-à-la-Masse method (MALM) .............................................................................. 70 4.2.2 Experimental setup ..................................................................................................... 70 4.2.3 Measurement principles ............................................................................................ 72 4.2.4 Assessed Scenarios ..................................................................................................... 73 4.3 Results and discussions ................................................................................... 74 VIII Inhaltsverzeichnis 4.3.1 Contour Visualization ................................................................................................. 74 First Leakage scenario ...................................................................................................... 74 Other leakage scenarios .................................................................................................. 75 4.3.2 Trend Analyses ............................................................................................................ 77 Leakage proximity ............................................................................................................. 77 Vertical Assessment .......................................................................................................... 78 4.3.3 Data Validation and Sensitivity Analyses ................................................................. 79 Data Validation .................................................................................................................. 79 Sensitivity Analyses ........................................................................................................... 80 4.3.4 Application in practice ................................................................................................ 82 4.4 Summary and Conclusion ............................................................................... 83 4.5 References ......................................................................................................... 85 5 Conclusions and Outlooks .................................................................. 88 5.1 Discussion and Conclusions ............................................................................ 88 5.2 Outlooks ............................................................................................................ 89 6 Supplementary Information ............................................................... 92 / Leaky sewer systems are present in our urbanized world and due to their hidden infrastructure and monitoring challenges, their leakages tend to remain unnoticed often at initial stages. Despite an extensive technological development in sewer inspection methods and their implemented techniques, sewer monitoring at the city scale remains costly and challenging. Therefore, a recommendation procedure and method classification are needed to have a sustainable and cost-effective sewer inspection plan at the city scale. In this context, this study can be mainly divided into three parts. First, an extensive study literature was conducted on available sewer inspection methods to have a wider understanding on their area of impacts and technicality levels, Furthermore, these inspection methods were categorized into three tiers based on their area of impact where Tier-1 consists of largest area of impact methods such as deterioration modelling, which provide a vast yet reliable understanding of the sewer system integrity. Tier-2 offers intermediatory inspection methods such as aerial thermal imagery and geo-electrical inspection techniques, which can provide a non-destructive inspection on areas suggested from Tier-1 techniques. Following the area of impact, Tier-3 methods are mostly in-pipe inspection techniques, which often demand pipe dewatering and are costly to implement in returns of a high detection precision. Second, as a contribution to Tier-1 methods, Vulnerability Hotspot Mapping was developed, which is a GIS-based model according to the most frequently used factors by deterioration models and offers areas of the sewer system more prone to leakage. The validation and sensitivity analyses revealed that flow velocity, pipe age, and surface vegetation are the most sensible factors to the model respectively. Furthermore, the linear model resulted in 76% of efficiency and mean squared error of 0,918 while it was improved with random forest algorithm with 400 trees, which points out the vulnerability mapping potential as an early sewer inspection method at the city scale. Third, Tier-2 methods were updated by emphasizing on the potential of Electrical Resistivity Tomography and Mise à-la-masse techniques as geo-electrical and non-destructive methods, which were experimentally tested within a wooden frame with a matrix of sensors and electrodes implemented. The experimental tank consists of three layers of electrodes in saturated and unsaturated zones, when various leakage scenarios were conducted to investigate on leakage visibility by these methods. Despite the capability of these methods for leakage detection, it was assessed that Electrical Resistivity Tomography has higher leakage detection sensibility than Mise à-la-masse while offering less mobility, which is a considerable point in method selection process. Moreover, it was observed that Mise à-la-masse is more sensitive to leakage presence rather than humidity and temperature variations and resulted in 0.8 and 0.7 in Pearson’s r and R2 respectively in comparison to sampled data during the leakage scenarios. All over, this study suggests that at least two (preferably 3) inspection techniques belonging to different tiers should be implemented to have a sustainable inspection plan at the city scale. The proposed approach helps to have a balance between cost and precision as well as an equilibrium between time and area of impact, which provides a decentralized and sustainable inspection plan.:List of Abbreviations .......................................................................................... IX List of Peer-Reviewed Publications on the Ph.D. Topic .................................. X List of Co-authored Peer-Reviewed Publications on the Ph.D. Topic ............ X 1 General Introduction........................................................................... 1 1.1 Background ....................................................................................................... 1 1.2 Aim and Objectives .......................................................................................... 3 1.3 Structure of the Document ............................................................................. 3 2 Towards a Decentralized Solution for Sewer Leakage Detection .............................................................................................. 8 2.1 Introduction ...................................................................................................... 10 2.2 Sewer inspection methods (SIMs) overview ................................................. 11 2.2.1 Tier-one (T-I) ................................................................................................................. 11 Deterioration models ....................................................................................................... 12 Hotspot mapping .............................................................................................................. 14 2.2.2 Tier-two (T-II) methods ............................................................................................... 15 Aerial thermal imaging (ATI) ............................................................................................ 15 Ground penetration radar (GPR) .................................................................................... 16 Electrical resistivity tomography (ERT) ........................................................................... 17 Mise-à-la-masse method (MLM)...................................................................................... 18 Soil Sampling ..................................................................................................................... 18 2.2.3 Tier-three (T-III) methods ........................................................................................... 20 General approaches ......................................................................................................... 20 Laser scanning ................................................................................................................... 21 Visual inspection ............................................................................................................... 21 Acoustic methods ............................................................................................................. 22 Ultrasonic inspection ........................................................................................................ 24 Multi-sensor robots .......................................................................................................... 24 Electromagnetic Inspection ............................................................................................. 26 Thermography Inspection ............................................................................................... 26 Tracer Test ......................................................................................................................... 27 VII 2.3 Discussion.......................................................................................................... 30 2.4 Conclusion and outlook ................................................................................... 33 2.5 References ......................................................................................................... 34 3 Vulnerability Hotspot Mapping (VHM) of Sewer Pipes based on Deterioration Factors .................................................................... 42 3.1 Introduction ...................................................................................................... 43 3.2 Materials and Methods.................................................................................... 44 3.2.1 Overview of the sewer deterioration factors. .......................................................... 45 Pipe Age .............................................................................................................................. 46 Pipe Material ...................................................................................................................... 47 Sewer Type ......................................................................................................................... 48 Flow Velocity ...................................................................................................................... 48 Node Degree...................................................................................................................... 49 Surface Vegetation ............................................................................................................ 50 Criticality class and weighting matrix ............................................................................. 50 3.3 Case study ......................................................................................................... 52 3.4 Results and discussions ................................................................................... 54 3.4.1 Network assessment .................................................................................................. 54 3.4.2 Validation and sensitivity analysis ............................................................................ 56 3.5 Summary and conclusion ................................................................................ 61 3.6 Reference........................................................................................................... 63 4 Laboratory Application of the Mise-à-la-Masse (MALM) for Sewer Leakage Detection as an intermediary inspection method. ................................................................................................ 67 4.1 Introduction ...................................................................................................... 68 4.2 Methodology ..................................................................................................... 70 4.2.1 Mise-à-la-Masse method (MALM) .............................................................................. 70 4.2.2 Experimental setup ..................................................................................................... 70 4.2.3 Measurement principles ............................................................................................ 72 4.2.4 Assessed Scenarios ..................................................................................................... 73 4.3 Results and discussions ................................................................................... 74 VIII Inhaltsverzeichnis 4.3.1 Contour Visualization ................................................................................................. 74 First Leakage scenario ...................................................................................................... 74 Other leakage scenarios .................................................................................................. 75 4.3.2 Trend Analyses ............................................................................................................ 77 Leakage proximity ............................................................................................................. 77 Vertical Assessment .......................................................................................................... 78 4.3.3 Data Validation and Sensitivity Analyses ................................................................. 79 Data Validation .................................................................................................................. 79 Sensitivity Analyses ........................................................................................................... 80 4.3.4 Application in practice ................................................................................................ 82 4.4 Summary and Conclusion ............................................................................... 83 4.5 References ......................................................................................................... 85 5 Conclusions and Outlooks .................................................................. 88 5.1 Discussion and Conclusions ............................................................................ 88 5.2 Outlooks ............................................................................................................ 89 6 Supplementary Information ............................................................... 92
85

Applicability of satellite and NWP precipitation for flood modeling and forecasting in transboundary Chenab River Basin, Pakistan

Ahmed, Ehtesham 11 April 2024 (has links)
This research was aimed to evaluate the possibility of using satellite precipitation products (SPPs) and Numerical Weather Prediction (NWP) of precipitation for better hydrologic simulations and flood forecasting in the trans-boundary Chenab River Basin (CRB) in Pakistan. This research was divided into three parts. In the first part, two renowned SPPs, i.e., global precipitation mission (GPM) IMERG-F v6 and tropical rainfall measuring mission (TRMM) 3B42 v7, were incorporated in a semidistributed hydrological model, i.e., the soil and water assessment tool (SWAT), to assess the daily and monthly runoff pattern in Chenab River at the Marala Barrage gauging site in Pakistan. The results exhibit higher correlation between observed and simulated discharges at monthly timescale simulations rather than daily timescale simulations. Moreover, results show that IMERG-F is superior to 3B42 by indicating higher R2, higher Nash–Sutcliffe efficiency (NSE), and lower percent bias (PBIAS) at both monthly and daily timescale. In the second part, three latest half-hourly (HH) and daily (D) SPPs, i.e., 'IMERG-E', 'IMERGL', and 'IMERG-F', were evaluated for daily and monthly flow simulations in the SWAT model. The study revealed that monthly flow simulation performance is better than daily flow simulation in all sub-daily and daily SPPs-based models. Results depict that IMERGHHF and IMERG-DF yield the best performance among the other latency levels of SPPs. However, the IMERG-HHF based model has a reasonably higher daily correlation coefficient (R) and lower daily root mean square error (RMSE) than IMERG-DF. IMERG-HHF displays the lowest PBIAS for daily and monthly flow validations and it also represents relatively higher values of R2 and NSE than any other model for daily and monthly model validation. Moreover, the sub-daily IMERG based model outperformed the daily IMERG based model for all calibration and validation scenarios. IMERG-DL based model demonstrates poor performance among all of the SPPs, in daily and monthly flow validation, with low R2, low NSE, and high PBIAS. Additionally, the IMERG-HHE model outperformed IMERG-HHL. In the third and last part of this research, coupled hydro-meteorological precipitation information was used to forecast the 2016 flood event in the Chenab River Basin. The gaugecalibrated SPP, i.e., Global Satellite Mapping of Precipitation (GSMaP_Gauge), was selected to calibrate the Integrated Flood Analysis System (IFAS) model for the 2016 flood event. Precipitation from the Global Forecast System (GFS) NWP, with nine different lead times up to 4 days, was used in the calibrated IFAS model. This study revealed that the hydrologic simulations in IFAS, with global GFS forecasts, were unable to predict the flood peak for all lead times. Later, the Weather Research and Forecasting (WRF) model was used to downscale the precipitation forecasts with one-way and two-way nesting approaches. It was found in this study that the simulated hydrographs in the IFAS model, at different lead times, from the precipitation of two-way WRF nesting exhibited superior performance with the highest R2, NSE and the lowest PBIAS compared with one-way nesting. Moreover, it was concluded that the combination of GFS forecast and two-way WRF nesting can provide high-quality precipitation prediction to simulate flood hydrographs with a remarkable lead time of 96 h when applying coupled hydrometeorological flow simulation.
86

On sampling bias in multiphase flows: Particle image velocimetry in bubbly flows

Ziegenhein, Thomas, Lucas, Dirk January 2016 (has links)
Measuring the liquid velocity and turbulence parameters in multiphase flows is a challenging task. In general, measurements based on optical methods are hindered by the presence of the gas phase. In the present work, it is shown that this leads to a sampling bias. Here, particle image velocimetry (PIV) is used to measure the liquid velocity and turbulence in a bubble column for different gas volume flow rates. As a result, passing bubbles lead to a significant sampling bias, which is evaluated by the mean liquid velocity and Reynolds stress tensor components. To overcome the sampling bias a window averaging procedure that waits a time depending on the locally distributed velocity information (hold processor) is derived. The procedure is demonstrated for an analytical test function. The PIV results obtained with the hold processor are reasonable for all values. By using the new procedure, reliable liquid velocity measurements in bubbly flows, which are vitally needed for CFD validation and modeling, are possible. In addition, the findings are general and can be applied to other flow situations and measuring techniques.
87

Fraktionierung des Chemischen Sauerstoffbedarfs mithilfe von Extinktionsmessungen im UV/Vis-Spektralbereich

Weber, Steffen 21 April 2023 (has links)
Das Messverfahren der optischen Spektrophotometrie wird zur kontinuierlichen Messung der Abwasserqualität auf ihre Einsatztauglichkeit überprüft. Der chemische Sauerstoffbedarf (CSB) wird als zentraler Kennwert für die stoffliche Verschmutzung von Abwasser und für dessen Nachweis in Oberflächengewässern eingesetzt, welche es zu bestimmen galt. Dabei wird der Informationsgehalt über eine organische, summarische Kohlenstoffbelastung mittels einer zusätzlichen Fraktionierung erhöht. In einer Labormesskampagne werden auf der Grundlage von Respirationsversuchen Daten aus Extinktionswerten des UV/Vis-Spektrums und Referenzwerten (Standardanalyseparameter und simulierte Stoffkonzentrationen mithilfe des Activated Sludge Modell No. 1) generiert. Darauf aufbauend werden Kalibrationsmodelle für den CSB und einzelne Fraktionen entwickelt. Die Modelle werden mithilfe des Regressionsansatzes der Partial-Least-Squares entwickelt und im Rahmen eines Anwendungsbeispiels auf ihre Praxistauglichkeit überprüft. Als Ergebnis dieser Arbeit stehen Kalibrationsmodelle für den Einsatz im kommunalem Abwasser unter Trockenwetterbedingungen zur Verfügung. Die Vorhersagequalität nimmt mit zunehmender Differenzierung ab. Von einer Weiterverwendung der berechneten Äquivalentkonzentrationen für die CSB-Fraktionen (SS, XS, SI und XI), z. B. als Kalibriergröße für Stofftransportmodelle oder als Steuer- und Regelgröße, wird allerdings abgeraten. Als Ursache für die hohen Messungenauigkeiten wurde eine unzureichende Anpassung an die Veränderungen in der Abwasserzusammensetzung während eines Trockenwettertagesganges identifiziert. Mit einer erweiterten Datengrundlage, unter der Verwendung von Standardanalyseparametern (CSB, CSBmf und BSB) in einer Abwasserprobe, welche für den Ausschluss von Stoffverbindungen vor und nach einer respirativen Vorbehandlung bestimmt werden, wird eine höhere Modellgüte in Aussicht gestellt. Darüber hinaus wird ein Umdenken hinsichtlich statischer - hin zu dynamischen - Kalibrationsfunktionen für UV/Vis-Sensoren vorgeschlagen. Eine Generalisierbarkeit der entwickelten Kalibrationsmodelle auf weitere Wetterbedingungen, Messstandorte oder Sensoren wird nicht empfohlen.:Abbildungen VI Tabellen XIII Abkürzungen XV 1 Einleitung 1 1.1 Motivation 1 1.2 Zielstellung 2 2 Stand der Forschung 5 2.1 Kohlenstoffe 6 2.1.1 Zusammensetzung und Herkunft im häuslichen Abwasser 7 2.1.1.1 Fette 8 2.1.1.2 Proteine 8 2.1.1.3 Tenside 9 2.1.1.4 Phenole 10 2.1.1.5 Kohlenwasserstoffe 10 2.1.2 Fraktionierung von Kohlenstoffverbindungen 11 2.1.2.1 Chemischer Sauerstoffbedarf 12 2.1.2.2 Ansätze zur CSB-Fraktionierung 12 2.1.2.3 Stoffzusammensetzung einzelner CSB-Fraktionen 15 2.1.2.4 Messmethoden zur Bestimmung des CSB 18 2.2 Optische Spektroskopie 20 2.2.1 Grundlagen 20 2.2.1.1 Elektromagnetische Strahlung 20 2.2.1.2 Einordnung der optischen Spektroskopie 21 2.2.1.3 Lichtabsorption 21 2.2.1.4 Chemisch-physikalische Grundlagen 22 2.2.1.5 Mathematische Grundlagen 24 2.2.1.6 Extinktionsmessung 25 2.2.2 Online-Messtechnik 26 2.2.2.1 Sensoren /-hersteller 26 2.2.2.2 Kalibrierung 26 2.2.2.2.1 Kalibrierung der S::CAN MESSTECHNIK GmbH 27 2.2.2.2.2 Unabhängige Analyseverfahren zur Auswertung spektrophotometrischer Messreihen 28 2.2.2.3 Messung 29 2.2.2.3.1 Einstellungen und Voraussetzungen 29 2.2.2.3.2 Qualitative Einflussnahme von Störgrößen auf die spektroskopische Datenerfassung 30 2.2.3 Einsatz in der Siedlungswasserwirtschaft und Hydrologie 31 3 Versuchsdurchführung und Analytik 33 3.1 Messkampagnen 33 3.1.1 Labormessversuche 33 3.1.1.1 Respirationsversuch 34 3.1.1.1.1 Versuchsaufbau zum Respirationsversuch 35 3.1.1.1.2 Betriebshinweise Respirationsversuch 38 3.1.1.2 Verdünnungsversuch 41 3.1.1.2.1 Versuchsaufbau zum Verdünnungsversuch 42 3.1.1.2.2 Betriebshinweise Verdünnungsversuch 43 3.1.2 Feldmessversuch 43 3.1.2.1 Versuchsaufbau zum Feldmessversuch 44 3.1.2.2 Betriebshinweise Feldmessversuch 46 3.2 Abwasserproben: Aufbewahrung und Analytik 47 3.2.1 Konservierung und Probenvorbehandlung 48 3.2.2 Standardisierte Laboranalyseverfahren 49 3.2.2.1 CSB 49 3.2.2.2 Biologischer Sauerstoffbedarf BSBn 50 3.3 Mess- und Regelinstrumente 51 3.3.1 Optischer Multiparameter-Sensor 51 3.3.2 Luminescent Dissolved Oxygen-Sensor (LDO) 53 3.3.3 Peristaltik-Pumpe 54 3.3.4 Dispergierer 54 4 Untersuchungen zur Entwicklung und Anwendung von UV/Vis-Kalibrierungen 55 4.1 Statistische Verfahren zur Kalibrierung 55 4.1.1 Datengrundlage und Methoden 56 4.1.1.1 Datengrundlage 56 4.1.1.2 Multivariate Datenanalyse 57 4.1.1.2.1 Regressionsanalyse 58 4.1.1.2.1.1 Schätzung der Regressionsfunktion 59 4.1.1.2.2 Qualitätsprüfung 61 4.1.1.2.3 Prüfung der Modellprämissen 63 4.1.1.2.4 Multivariate Regressionsanalyse 66 4.1.1.3 Vergleich der Kalibrierverfahren 70 4.1.2 Ergebnisse 70 4.1.2.1 Regressionsansätze für UV/Vis-Kalibrierung 70 4.1.2.1.1 Partial-Least-Squares Regression (PLS-R) 70 4.1.2.1.2 Lasso-Regression 73 4.1.2.1.3 Herstellerkalibrierung (SCAN GmbH) 73 4.1.2.1.3.1 Anwendung der globalen Herstellerkalibrierung 73 4.1.2.1.3.2 Lokal angepasste Herstellerkalibrierung 74 4.1.3 Auswertungen 75 4.1.3.1 Tauglichkeit angewandter Regressionsansätze zur Entwicklung von UV/Vis-Kalibrierfunktionen 75 4.1.3.1.1 Vergleich der Vorhersagequalitäten zwischen Regressionsansätzen und Herstellerkali¬- brierung 75 4.1.3.1.2 Aussagekraft angewandter Regressionsmodelle 77 4.1.3.1.2.1 Regressionsfunktion und -koeffizienten 77 4.1.3.1.2.2 Modellprämissen 78 4.1.3.2 Identifizierung signifikanter WL oder -Bereiche 80 4.2 Fraktionierung von CSB-Verbindungen 81 4.2.1 Datengrundlage und Methoden 82 4.2.1.1 Laborwertmethode 83 4.2.1.2 Modellwertmethode 85 4.2.1.2.1 Respirometrische Messung 86 4.2.1.2.2 Sauerstoffverbrauchsrate 87 4.2.1.2.3 Modellberechnung 89 4.2.1.2.4 Simulationsmethode mit modifiziertem Activated Sludge Modell No. 1 92 4.2.1.2.5 Modellkalibrierung 95 4.2.1.2.6 Datenauswahl 96 4.2.1.3 Lichtabsorptionsmethode 96 4.2.2 Ergebnisse 97 4.2.2.1 Modellwertmethode mit ASM No. 1 97 4.2.2.2 Auswahl von Modelldaten 100 4.2.2.3 UV/Vis-Kalibrierfunktionen 101 4.2.2.3.1 CSB-Fraktionen 101 4.2.2.3.2 Vergleich MW- und LW-Modell 103 4.2.3 Auswertungen 104 4.2.3.1 Tauglichkeit von Simulationsergebnissen aus Modellwertmethode zur Entwicklung von Kalibrierfunktionen 104 4.2.3.2 Abweichende Vorhersagequalitäten zwischen den UV/Vis-Kalibrierfunktionen 106 4.2.3.3 Messunsicherheiten und Modellqualität 107 4.2.3.4 Signifikante Wellenlängen oder -bereiche für einzelne CSB-Fraktionen 109 4.3 Anwendungsbeispiel: Kohlenstoffumsatz entlang einer Fließstrecke 111 4.3.1 Datengrundlage und Methoden 112 4.3.1.1 Einsatz von UV/Vis-Messtechnik 115 4.3.1.1.1 Vergleichbarkeit bei Parallelbetrieb baugleicher Sensoren 115 4.3.1.1.1.1 Versuchsdurchführung 116 4.3.1.1.1.2 Berechnungsansätze 116 4.3.1.1.2 Lokale Kalibrierung 117 4.3.1.1.2.1 Univariat 118 4.3.1.1.2.2 Multivariat 118 4.3.1.2 Kohlenstoffumwandlung und -umsatz innerhalb des Durchflussreaktors 118 4.3.1.2.1 Vorverarbeitung von UV/Vis-Daten 120 4.3.1.2.2 Zeitsynchronisation mithilfe der Fließzeit 120 4.3.1.2.3 Bestimmung von stofflichen Veränderungen in einem Wasserpaket 121 4.3.2 Ergebnisse 122 4.3.2.1 Praxiseinsatz von UV/Vis-Messtechnik 122 4.3.2.1.1 Stabilität und Vergleichbarkeit von Messsignalen bei unterschiedlichen Sensoren 122 4.3.2.1.1.1 Messgüte 122 4.3.2.1.1.2 Sensoranpassung 124 4.3.2.1.2 UV/Vis-Kalibrationsfunktionen 125 4.3.2.1.2.1 Validierung LK-PLS-R 126 4.3.2.1.2.2 Lokale Nachkalibrierung LK-PLS-R 128 4.3.2.1.3 Anwendung entwickelter Kalibrationsmodelle auf Zeitreihen 130 4.3.2.2 Kohlenstoffumsatz 131 4.3.3 Auswertungen 135 4.3.3.1 Tauglichkeit von UV/Vis-Messtechnik für den Einsatz in der Kanalisation 135 4.3.3.1.1 Vorhersagegenauigkeit von Kalibrationsfunktionen 135 4.3.3.1.2 Abweichende Messergebnisse der Extinktion von einzelnen Sensoren 135 4.3.3.2 Veränderungen in den Konzentrationen einzelner Kohlenstofffraktionen entlang der Fließstrecke 136 5 Diskussion 139 6 Ausblick 151 7 Zusammenfassung 153 8 Literaturverzeichnis 157 A Anhang 171 A.1 Respirationsversuche CSB-Fraktionen 171 A.1.1 Quellcode - CSB-Fraktionierung 171 A.1.2 Respirationsversuche CSB-Fraktionen 175 A.1.3 Quellcode - PLS-Regression 178 A.1.4 UV/Vis-Kalibrierung - CSB-Fraktionen 180 A.1.5 Modellgüte 183 A.1.6 Modellprämissen 184 A.2 Feldmesskampagne 188 A.2.1 Sensorkompensation 188 A.2.2 Korrelationsplots 189 A.2.2.1 Validierung der Kalibrationsmodelle 189 A.2.2.2 Nachkalibrierung der Kalibrationsmodelle 192 A.2.2.2.1 univariat 192 A.2.3 Stoffliche Veränderungen in Wasserpaketen 198 A.2.4 Laboranalysen Stoffliche Veränderungen in Wasserpaketen 201 / Optical spectrophotometry is checked as measuring method for continuous monitoring of waste water quality. The chemical oxygen demand (COD) is used as a central parame-ter for the material assessment of waste water and for its detection in surface waters. The information value about an organic load is increased using an additional fractiona-tion. In a laboratory measurement campaign, data from extinction values of the UV/Vis spectrum and reference values are created (standard analysis parameters and simulated concentrations by using the Activated Sludge Model No. 1). Based on this calibration models for the COD and individual fractions are developed using the regression ap-proach of the partial least squares and their practical suitability is checked in the context of an application example. As a result of this work, calibration models for use in munici-pal wastewater under dry weather conditions, are available. The prediction quality de-creases with increasing differentiation. We advise against further use of the calculated equivalent concentrations for the COD fractions (SS, XS, SI und XI), e.g. as a calibration var-iable for mass transfer models or as a control and regulation variable. The reason for higher measurement uncertainties is identified as insufficient adaptation to the changing wastewater composition during a dry weather day. With an extended data basis, a higher model quality is promised: Standard analysis parameters (COD, CODmf and BOD) are de-termined in wastewater samples before and after respiratory pretreatment in order to be able to rule out substances. In addition, rethinking of static calibration functions for UV/Vis sensors is proposed towards dynamic methods. A generalization of calibration models to other weather conditions, measurement locations or sensors is not recom-mended.:Abbildungen VI Tabellen XIII Abkürzungen XV 1 Einleitung 1 1.1 Motivation 1 1.2 Zielstellung 2 2 Stand der Forschung 5 2.1 Kohlenstoffe 6 2.1.1 Zusammensetzung und Herkunft im häuslichen Abwasser 7 2.1.1.1 Fette 8 2.1.1.2 Proteine 8 2.1.1.3 Tenside 9 2.1.1.4 Phenole 10 2.1.1.5 Kohlenwasserstoffe 10 2.1.2 Fraktionierung von Kohlenstoffverbindungen 11 2.1.2.1 Chemischer Sauerstoffbedarf 12 2.1.2.2 Ansätze zur CSB-Fraktionierung 12 2.1.2.3 Stoffzusammensetzung einzelner CSB-Fraktionen 15 2.1.2.4 Messmethoden zur Bestimmung des CSB 18 2.2 Optische Spektroskopie 20 2.2.1 Grundlagen 20 2.2.1.1 Elektromagnetische Strahlung 20 2.2.1.2 Einordnung der optischen Spektroskopie 21 2.2.1.3 Lichtabsorption 21 2.2.1.4 Chemisch-physikalische Grundlagen 22 2.2.1.5 Mathematische Grundlagen 24 2.2.1.6 Extinktionsmessung 25 2.2.2 Online-Messtechnik 26 2.2.2.1 Sensoren /-hersteller 26 2.2.2.2 Kalibrierung 26 2.2.2.2.1 Kalibrierung der S::CAN MESSTECHNIK GmbH 27 2.2.2.2.2 Unabhängige Analyseverfahren zur Auswertung spektrophotometrischer Messreihen 28 2.2.2.3 Messung 29 2.2.2.3.1 Einstellungen und Voraussetzungen 29 2.2.2.3.2 Qualitative Einflussnahme von Störgrößen auf die spektroskopische Datenerfassung 30 2.2.3 Einsatz in der Siedlungswasserwirtschaft und Hydrologie 31 3 Versuchsdurchführung und Analytik 33 3.1 Messkampagnen 33 3.1.1 Labormessversuche 33 3.1.1.1 Respirationsversuch 34 3.1.1.1.1 Versuchsaufbau zum Respirationsversuch 35 3.1.1.1.2 Betriebshinweise Respirationsversuch 38 3.1.1.2 Verdünnungsversuch 41 3.1.1.2.1 Versuchsaufbau zum Verdünnungsversuch 42 3.1.1.2.2 Betriebshinweise Verdünnungsversuch 43 3.1.2 Feldmessversuch 43 3.1.2.1 Versuchsaufbau zum Feldmessversuch 44 3.1.2.2 Betriebshinweise Feldmessversuch 46 3.2 Abwasserproben: Aufbewahrung und Analytik 47 3.2.1 Konservierung und Probenvorbehandlung 48 3.2.2 Standardisierte Laboranalyseverfahren 49 3.2.2.1 CSB 49 3.2.2.2 Biologischer Sauerstoffbedarf BSBn 50 3.3 Mess- und Regelinstrumente 51 3.3.1 Optischer Multiparameter-Sensor 51 3.3.2 Luminescent Dissolved Oxygen-Sensor (LDO) 53 3.3.3 Peristaltik-Pumpe 54 3.3.4 Dispergierer 54 4 Untersuchungen zur Entwicklung und Anwendung von UV/Vis-Kalibrierungen 55 4.1 Statistische Verfahren zur Kalibrierung 55 4.1.1 Datengrundlage und Methoden 56 4.1.1.1 Datengrundlage 56 4.1.1.2 Multivariate Datenanalyse 57 4.1.1.2.1 Regressionsanalyse 58 4.1.1.2.1.1 Schätzung der Regressionsfunktion 59 4.1.1.2.2 Qualitätsprüfung 61 4.1.1.2.3 Prüfung der Modellprämissen 63 4.1.1.2.4 Multivariate Regressionsanalyse 66 4.1.1.3 Vergleich der Kalibrierverfahren 70 4.1.2 Ergebnisse 70 4.1.2.1 Regressionsansätze für UV/Vis-Kalibrierung 70 4.1.2.1.1 Partial-Least-Squares Regression (PLS-R) 70 4.1.2.1.2 Lasso-Regression 73 4.1.2.1.3 Herstellerkalibrierung (SCAN GmbH) 73 4.1.2.1.3.1 Anwendung der globalen Herstellerkalibrierung 73 4.1.2.1.3.2 Lokal angepasste Herstellerkalibrierung 74 4.1.3 Auswertungen 75 4.1.3.1 Tauglichkeit angewandter Regressionsansätze zur Entwicklung von UV/Vis-Kalibrierfunktionen 75 4.1.3.1.1 Vergleich der Vorhersagequalitäten zwischen Regressionsansätzen und Herstellerkali¬- brierung 75 4.1.3.1.2 Aussagekraft angewandter Regressionsmodelle 77 4.1.3.1.2.1 Regressionsfunktion und -koeffizienten 77 4.1.3.1.2.2 Modellprämissen 78 4.1.3.2 Identifizierung signifikanter WL oder -Bereiche 80 4.2 Fraktionierung von CSB-Verbindungen 81 4.2.1 Datengrundlage und Methoden 82 4.2.1.1 Laborwertmethode 83 4.2.1.2 Modellwertmethode 85 4.2.1.2.1 Respirometrische Messung 86 4.2.1.2.2 Sauerstoffverbrauchsrate 87 4.2.1.2.3 Modellberechnung 89 4.2.1.2.4 Simulationsmethode mit modifiziertem Activated Sludge Modell No. 1 92 4.2.1.2.5 Modellkalibrierung 95 4.2.1.2.6 Datenauswahl 96 4.2.1.3 Lichtabsorptionsmethode 96 4.2.2 Ergebnisse 97 4.2.2.1 Modellwertmethode mit ASM No. 1 97 4.2.2.2 Auswahl von Modelldaten 100 4.2.2.3 UV/Vis-Kalibrierfunktionen 101 4.2.2.3.1 CSB-Fraktionen 101 4.2.2.3.2 Vergleich MW- und LW-Modell 103 4.2.3 Auswertungen 104 4.2.3.1 Tauglichkeit von Simulationsergebnissen aus Modellwertmethode zur Entwicklung von Kalibrierfunktionen 104 4.2.3.2 Abweichende Vorhersagequalitäten zwischen den UV/Vis-Kalibrierfunktionen 106 4.2.3.3 Messunsicherheiten und Modellqualität 107 4.2.3.4 Signifikante Wellenlängen oder -bereiche für einzelne CSB-Fraktionen 109 4.3 Anwendungsbeispiel: Kohlenstoffumsatz entlang einer Fließstrecke 111 4.3.1 Datengrundlage und Methoden 112 4.3.1.1 Einsatz von UV/Vis-Messtechnik 115 4.3.1.1.1 Vergleichbarkeit bei Parallelbetrieb baugleicher Sensoren 115 4.3.1.1.1.1 Versuchsdurchführung 116 4.3.1.1.1.2 Berechnungsansätze 116 4.3.1.1.2 Lokale Kalibrierung 117 4.3.1.1.2.1 Univariat 118 4.3.1.1.2.2 Multivariat 118 4.3.1.2 Kohlenstoffumwandlung und -umsatz innerhalb des Durchflussreaktors 118 4.3.1.2.1 Vorverarbeitung von UV/Vis-Daten 120 4.3.1.2.2 Zeitsynchronisation mithilfe der Fließzeit 120 4.3.1.2.3 Bestimmung von stofflichen Veränderungen in einem Wasserpaket 121 4.3.2 Ergebnisse 122 4.3.2.1 Praxiseinsatz von UV/Vis-Messtechnik 122 4.3.2.1.1 Stabilität und Vergleichbarkeit von Messsignalen bei unterschiedlichen Sensoren 122 4.3.2.1.1.1 Messgüte 122 4.3.2.1.1.2 Sensoranpassung 124 4.3.2.1.2 UV/Vis-Kalibrationsfunktionen 125 4.3.2.1.2.1 Validierung LK-PLS-R 126 4.3.2.1.2.2 Lokale Nachkalibrierung LK-PLS-R 128 4.3.2.1.3 Anwendung entwickelter Kalibrationsmodelle auf Zeitreihen 130 4.3.2.2 Kohlenstoffumsatz 131 4.3.3 Auswertungen 135 4.3.3.1 Tauglichkeit von UV/Vis-Messtechnik für den Einsatz in der Kanalisation 135 4.3.3.1.1 Vorhersagegenauigkeit von Kalibrationsfunktionen 135 4.3.3.1.2 Abweichende Messergebnisse der Extinktion von einzelnen Sensoren 135 4.3.3.2 Veränderungen in den Konzentrationen einzelner Kohlenstofffraktionen entlang der Fließstrecke 136 5 Diskussion 139 6 Ausblick 151 7 Zusammenfassung 153 8 Literaturverzeichnis 157 A Anhang 171 A.1 Respirationsversuche CSB-Fraktionen 171 A.1.1 Quellcode - CSB-Fraktionierung 171 A.1.2 Respirationsversuche CSB-Fraktionen 175 A.1.3 Quellcode - PLS-Regression 178 A.1.4 UV/Vis-Kalibrierung - CSB-Fraktionen 180 A.1.5 Modellgüte 183 A.1.6 Modellprämissen 184 A.2 Feldmesskampagne 188 A.2.1 Sensorkompensation 188 A.2.2 Korrelationsplots 189 A.2.2.1 Validierung der Kalibrationsmodelle 189 A.2.2.2 Nachkalibrierung der Kalibrationsmodelle 192 A.2.2.2.1 univariat 192 A.2.3 Stoffliche Veränderungen in Wasserpaketen 198 A.2.4 Laboranalysen Stoffliche Veränderungen in Wasserpaketen 201
88

Der Gewässerknoten Leipzig

21 December 2022 (has links)
Durch das Leipziger Stadtgebiet fließen insgesamt rund 176 Kilometer Flüsse und Bäche. Der Zusammenfluss von Weißer Elster, Pleiße und Parthe wird als „Gewässerknoten Leipzig“ bezeichnet. Er ist ein sogenanntes Binnendelta. Zum weit verzweigten System gehören noch zahlreiche kleine Bäche, Kanäle und ehemalige Mühlgräben. Mittelpunkt des Gewässerknotens ist das Elsterbecken. Redaktionsschluss: 27.08.2019

Page generated in 0.1553 seconds