• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photonics-based Multi-gas Sensor

Matharoo, Inderdeep 14 December 2011 (has links)
The design of a photonics-based multi-gas sensor is presented. Absorption spectroscopy theory has been analyzed to derive key requirements for effective gas concentration measurements. HITRAN spectral analyses have determined appropriate ranges for single and multi-gas sensing. A discussion of two setups (large-scale setup and portable prototype) outlines relevant results for the development of innovative data processing algorithms (floating-point technique (FPT)). Eight absorption lines were experimentally detected (761 nm range), facilitating the recognition of oxygen spectra with surety. The FPT was used to measure oxygen concentration with an approx. 2.5% error when scanning one absorption line. Strategies to reduce the error to below 0.1% and to improve the prototype are presented. The sensor is expected to operate in an inhomogeneous network. The network utilizes different sensors capable of cross-using information to achieve high reliability and accuracy, in order to predict, prevent, and recognize man-made and natural threats.
2

Photonics-based Multi-gas Sensor

Matharoo, Inderdeep 14 December 2011 (has links)
The design of a photonics-based multi-gas sensor is presented. Absorption spectroscopy theory has been analyzed to derive key requirements for effective gas concentration measurements. HITRAN spectral analyses have determined appropriate ranges for single and multi-gas sensing. A discussion of two setups (large-scale setup and portable prototype) outlines relevant results for the development of innovative data processing algorithms (floating-point technique (FPT)). Eight absorption lines were experimentally detected (761 nm range), facilitating the recognition of oxygen spectra with surety. The FPT was used to measure oxygen concentration with an approx. 2.5% error when scanning one absorption line. Strategies to reduce the error to below 0.1% and to improve the prototype are presented. The sensor is expected to operate in an inhomogeneous network. The network utilizes different sensors capable of cross-using information to achieve high reliability and accuracy, in order to predict, prevent, and recognize man-made and natural threats.

Page generated in 0.0786 seconds