• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 47
  • 7
  • 5
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 218
  • 218
  • 170
  • 134
  • 56
  • 49
  • 46
  • 45
  • 42
  • 42
  • 41
  • 39
  • 33
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Turbo Receiver for Spread Spectrum Systems Employing Parity Bit Selected Spreading Sequences

Mirzaee, Alireza 25 January 2012 (has links)
In spread spectrum systems employing parity bit selected spreading sequences, parity bits generated from a linear block encoder are used to select a spreading code from a set of mutually orthogonal spreading sequences. In this thesis, turbo receivers for SS-PB systems are proposed and investigated. In the transmitter, data bits are rst convolutionally encoded before being fed into SS-PB modulator. In fact, the parity bit spreading code selection technique acts as an inner encoder in this system without allocating any transmit energy to the additional redundancy provided by this technique. The receiver implements a turbo processing by iteratively exchanging the soft information on coded bits between a SISO detector and a SISO decoder. In this system, detection is performed by incorporating the extrinsic information provided by the decoder in the last iteration into the received signal to calculate the likelihood of each detected bit in terms of LLR which is used as the input for a SISO decoder. In addition, SISO detectors are proposed for MC-CDMA and MIMO-CDMA systems that employ parity bit selected and permutation spreading. In the case of multiuser scenario, a turbo SISO multiuser detector is introduced for SS-PB systems for both synchronous and asynchronous channels. In such systems, MAI is estimated from the extrinsic information provided by the SISO channel decoder in the previous iteration. SISO multiuser detectors are also proposed for the case of multiple users in MC-CDMA and MIMO-CDMA systems when parity bit selected and permutation spreading are used. Simulations performed for all the proposed turbo receivers show a signi cant reduction in BER in AWGN and fading channels over multiple iterations.
42

Improving emergency department overcrowding in medical center ¢w The experience of one medical center

Chang, Hong-Tai 28 August 2010 (has links)
Abstract Background: Emergency department (ED) overcrowding has become a significant problem throughout the large medical centers, leading to possible threatened medical quality, causing raised stress levels among staff and patients in EDs, and most importantly, adversely affecting patient outcomes. Due to its complexity, a large concerted group effort will be needed to increase awareness, implement proposed solutions, and make a change. ED overcrowding is a multifaceted problem that will require a multifaceted solution. Methods: We set up the "Input-Throughput-Output" model provides a structure for examining the factors that affect ED access, quality and outcomes. Using this model, we clarify the issues of ED overcrowding into three stages, propose ways to obtain needed information in each stage, test the strategies and then evaluate their outcomes. We utilized the analytic hierarchy process (APH) method to measure the weights of the physician¡¦s stress and arrange more efficacious and flexible duties accordingly. Results: This is a prospective study investigating ED overcrowding at this medical center from January 2008 through December 2009. Hospitals developed and implemented a number of best practices revolved around patient flow initiatives, specifically looking to improve input, throughput, and output. Conclusion: This study suggests that a decrease in ED overcrowding can be achieved through ongoing collaboration of the indicators and the implementation of best practices via the Input-Throughput-Output model.
43

Jointly Precoder Design with Wiretapping Relay for an Amplify-and-Forward MIMO System

Chen, Sin-Fong 28 August 2012 (has links)
For wireless communication systems, due to broadcasting nature of wireless medium, how to keep eavesdroppers from wiretapping messages is worth investigated. In addition to encryption techniques applied in application layer, physical layer secrecy techniques have been studied in literature. Under the premise that eavesdropper cannot steal any information, physical layer secrecy focus on maximizing the capacity of legal transmission, and make it more reliable by using physical properties of wireless channel. This thesis considers an amplify-and-forward (AF) multiple-input multiple-output (MIMO) cooperative communication network with an untrusted relay (UR), and linear precoders are employed at source, relay, and destination. The relay here serves as a bridge of transmission 1 between the source and the destination. However, assume that the untrusted relay may wiretap information from the source without authorization. In order to prevent relay from wiretapping information, the destination generates artificial noise (AN) to interfere the relay, when the relay is receiving information from the source. Since AN is generated by the destination, the destination can eliminate AN by itself after receiving signal from the relay without corrupting signals of legal transmission. We propose precoder design for source, relay and destination to maximize secrecy capacity under the power constraint of three nodes. By utilizing singular value decomposition (SVD) of all channel matrices and Hadamard inequality, we simplify the optimization problem of precoding matrices to scalar optimization problem, and optimization can be accomplished recursively.
44

Code optimization and analysis for multiple-input and multiple-output communication systems

Yue, Guosen 01 November 2005 (has links)
Design and analysis of random-like codes for various multiple-input and multiple-output communication systems are addressed in this work. Random-like codes have drawn significant interest because they offer capacity-achieving performance. We first consider the analysis and design of low-density parity-check (LDPC) codes for turbo multiuser detection in multipath CDMA channels. We develop techniques for computing the probability density function (pdf) of the extrinsic messages at the output of the soft-input soft-output (SISO) multiuser detectors as a function of the pdf of input extrinsic messages, user spreading codes, channel impulse responses, and signal-to-noise ratios. Using these techniques, we are able to accurately compute the thresholds for LDPC codes and design good irregular LDPC codes. We then apply the tools of density evolution with mixture Gaussian approximations to optimize irregular LDPC codes and to compute minimum operational signal-to-noise ratios for ergodic MIMO OFDM channels. In particular, the optimization is done for various MIMO OFDM system configurations which include different number of antennas, different channel models and different demodulation schemes. We also study the coding-spreading tradeoff in LDPC coded CDMA systems employing multiuser joint decoding. We solve the coding-spreading optimization based on the extrinsic information SNR evolution curves for the SISO multiuser detectors and the SISO LDPC decoders. Both single-cell and multi-cell scenarios will be considered. For each of these cases, we will characterize the extrinsic information for both finite-size systems and the so-called large systems where asymptotic performance results must be evoked. Finally, we consider the design optimization of irregular repeat accumulate (IRA) codes for MIMO communication systems employing iterative receivers. We present the density evolution-based procedure with Gaussian approximation for optimizing the IRA code ensemble. We adopt an approximation method based on linear programming to design an IRA code with the extrinsic information transfer (EXIT) chart matched to that of the soft MIMO demodulator.
45

A Study on Iterative Channel Estimation for MIMO-OFDM Systems

Lo, Li-chung 15 September 2008 (has links)
Multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technology has been used widely in many wireless communication systems. Signals will be distorted when they are transmitted in wireless channels. For the reason that wireless channel is time or location variant, we have to estimate the channel impulse response and use the channel state information to compensate the channel distortion. In order to estimate the state of the channel, let the known training symbols put in front of the data symbols and use training symbols to estimate channel response. A typical channel estimate for MIMO OFDM systems is treated as spatially uncorrelated. However in many realistic scenarios, the channel tends to be spatially correlated. Indeed, we have no prior knowledge of the channel spatial correlation. So consider the spatial correlation, the channel can estimate accurately. And it is important that how to combine spatial correlation and channel estimation to reduce the estimation error. In the paper we propose a iterative channel spatial correlation and channel estimation algorithm. At first, channel spatial correlation estimation is obtained by synchronize symbols. The receiver uses the estimated channel to help the detection/decision of data symbol. And then the channel estimation treats the detected signals as known data to perform a next stage channel estimation iteratively. By utilizing the iterative channel estimation and signal detection process we can reduce the estimation error caused by channel spatial correlation estimation. The accuracy of the channel estimation can be improved by increasing the number of iteration process. Simulation results demonstrate the iterative spatial correlation and channel estimation algorithm can provide better mean-square-error performance.
46

Performance Analysis of Cognitive Radio Network over SIMO System / Performance Analysis of Cognitive Radio Network over SIMO System

Haider, Iqbal Hasan, Rabby, MD. Fazla January 2012 (has links)
As resources are limited, radio spectrum becomes congested due to the growth of wireless applications. However, measurements address the fact that most of the licensed spectrums experience low utilization even in intensively teeming areas. In the exertion to improve the utilization of the limited spectrum resources, cognitive radio networks have emerged as a powerful technique to resolve this problem. There are two types of user in cognitive radio networks (CRNs) named as primary user (PU) and secondary user (SU). Therein, the CRN enables the SU to utilize the unused licensed frequency of the PU if it possibly finds the vacant spectrum or white space (known as opportunistic spectrum access). Alternatively, SU can transmit simultaneously with the PU provided that transmission power of SU does not cause any harmful interference to the PU (known as spectrum sharing systems). In this thesis work, we study fundamental knowledge of the CRNs and focus on the performance analysis of the single input multiple output (SIMO) system for spectrum sharing approach. We assume that a secondary transmitter (SU-Tx) has full channel state information (CSI). The SU-Tx can adjust its transmit power not to cause harmful interference to the PU and obtain an optimal transmit rate. In particular, we derive the closed-form expressions for the cumulative distribution function (CDF), outage probability and an analytical expression for symbol error probability (SEP). / As resources are limited, radio spectrum becomes congested due to the growth of wireless applications. However, measurements address the fact that most of the licensed spectrums experience low utilization even in intensively teeming areas. In the exertion to improve the utilization of the limited spectrum resources, cognitive radio networks have emerged as a powerful technique to resolve this problem. There are two types of user in cognitive radio networks (CRNs) named as primary user (PU) and secondary user (SU). Therein, the CRN enables the SU to utilize the unused licensed frequency of the PU if it possibly finds the vacant spectrum or white space (known as opportunistic spectrum access). Alternatively, SU can transmit simultaneously with the PU provided that transmission power of SU does not cause any harmful interference to the PU (known as spectrum sharing systems). In this thesis work, we study fundamental knowledge of the CRNs and focus on the performance analysis of the single input multiple output (SIMO) system for spectrum sharing approach. We assume that a secondary transmitter (SU-Tx) has full channel state information (CSI). The SU-Tx can adjust its transmit power not to cause harmful interference to the PU and obtain an optimal transmit rate. In particular, we derive the closed-form expressions for the cumulative distribution function (CDF), outage probability and an analytical expression for symbol error probability (SEP). / Iqbal Hasan Haider, cell: +46704571807 MD. Fazla Rabby, cell: +46734965477
47

Multicell coordination with multiple receive antennas

Hwang, Insoo 25 February 2014 (has links)
In multicell coordinated networks where multiple base stations cooperate to jointly combat interference from adjacent cells and fading to receivers, one of the outstanding questions is what is the role of receive antenna and receiver processing. Multiple receive antennas not only enable additional degrees of freedom at each receiver to combat the other-cell interference but also can change the transmitter design because transmitter and receiver beamforming design is often closely coordinated. In this dissertation, we investigate the role of the multiple receive antennas in multicell cooperative systems under different interference conditions. We then present novel non-iterative and iterative coordinated beamforming and precoding algorithms with different receiver processing. We present comprehensive performance comparison of various multicell cooperative systems and explore the feasibility of achieving much higher throughput via hyper-densification of heterogeneous and small cell networks with mandatory multicell cooperation. / text
48

Severely Fading MIMO Channels

Choi, Seung-Ho January 2007 (has links)
In most wireless communications research, the channel models considered experience less severe fading than the classic Rayleigh fading case. In this thesis, however, we investigate MIMO channels where the fading is more severe. In these environments, we show that the coefficient of variation of the channel amplitudes is a good predictor of the link mutual information, for a variety of models. We propose a novel channel model for severely fading channels based on the complex multivariate t distribution. For this model, we are able to compute exact results for the ergodic mutual information and approximations to the outage probabilities for the mutual information. Applications of this work include wireless sensors, RF tagging, land-mobile, indoor-mobile, ground-penetrating radar, and ionospheric radio links. Finally, we point out that the methodology can also be extended to evaluate the mutual information of a cellular MIMO link and the performance of various MIMO receivers in a cellular scenario. In these cellular applications, the channel itself is not severely fading but the multivariate t distribution can be applied to model the effects of intercellular interference.
49

Root Locus Techniques With Nonlinear Gain Parameterization

Wellman, Brandon 01 January 2012 (has links)
This thesis presents rules that characterize the root locus for polynomials that are nonlinear in the root-locus parameter k. Classical root locus applies to polynomials that are affine in k. In contrast, this thesis considers polynomials that are quadratic or cubic in k. In particular, we focus on constructing the root locus for linear feedback control systems, where the closed-loop denominator polynomial is quadratic or cubic in k. First, we present quadratic root-locus rules for a controller class that yields a closed-loop denominator polynomial that is quadratic in k. Next, we develop cubic root-locus rules for a controller class that yields a closed-loop denominator polynomial that is cubic in k. Finally, we extend the quadratic root-locus rules to accommodate a larger class of controllers. We also provide controller design examples to demonstrate the quadratic and cubic root locus. For example, we show that the triple integrator can be high-gain stabilized using a controller that yields a closed-loop denominator polynomial that is quadratic in k. Similarly, we show that the quadruple integrator can be high-gain stabilized using a controller that yields a closed-loop denominator polynomial that is cubic in k.
50

Turbo Receiver for Spread Spectrum Systems Employing Parity Bit Selected Spreading Sequences

Mirzaee, Alireza 25 January 2012 (has links)
In spread spectrum systems employing parity bit selected spreading sequences, parity bits generated from a linear block encoder are used to select a spreading code from a set of mutually orthogonal spreading sequences. In this thesis, turbo receivers for SS-PB systems are proposed and investigated. In the transmitter, data bits are rst convolutionally encoded before being fed into SS-PB modulator. In fact, the parity bit spreading code selection technique acts as an inner encoder in this system without allocating any transmit energy to the additional redundancy provided by this technique. The receiver implements a turbo processing by iteratively exchanging the soft information on coded bits between a SISO detector and a SISO decoder. In this system, detection is performed by incorporating the extrinsic information provided by the decoder in the last iteration into the received signal to calculate the likelihood of each detected bit in terms of LLR which is used as the input for a SISO decoder. In addition, SISO detectors are proposed for MC-CDMA and MIMO-CDMA systems that employ parity bit selected and permutation spreading. In the case of multiuser scenario, a turbo SISO multiuser detector is introduced for SS-PB systems for both synchronous and asynchronous channels. In such systems, MAI is estimated from the extrinsic information provided by the SISO channel decoder in the previous iteration. SISO multiuser detectors are also proposed for the case of multiple users in MC-CDMA and MIMO-CDMA systems when parity bit selected and permutation spreading are used. Simulations performed for all the proposed turbo receivers show a signi cant reduction in BER in AWGN and fading channels over multiple iterations.

Page generated in 0.0678 seconds