• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 76
  • 18
  • 15
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 406
  • 110
  • 88
  • 59
  • 58
  • 42
  • 41
  • 36
  • 36
  • 31
  • 28
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Directional Actuation Induced by Interactive Buckling in Slender Structures with Imperfections

Maria Joseph, Amal Jerald Joseph 28 August 2019 (has links)
No description available.
102

Discrete Nonlinear Wave Propagation In Kerr Nonlinear Media

Meier, Joachim 01 January 2004 (has links)
Discrete optical systems are a subgroup of periodic structures in which the evolution of a continuous electromagnetic field can be described by a discrete model. In this model, the total field is the sum of localized, discrete modes. Weakly coupled arrays of single mode channel waveguides have been known to fall into this class of systems since the late 1960's. Nonlinear discrete optics has received a considerable amount of interest in the last few years, triggered by the experimental realization of discrete solitons in a Kerr nonlinear AlGaAs waveguide array by H. Eisenberg and coworkers in 1998. In this work a detailed experimental investigation of discrete nonlinear wave propagation and the interactions between beams, including discrete solitons, in discrete systems is reported for the case of a strong Kerr nonlinearity. The possibility to completely overcome "discrete" diffraction and create highly localized solitons, in a scalar or vector geometry, as well as the limiting factors in the formation of such nonlinear waves is discussed. The reversal of the sign of diffraction over a range of propagation angles leads to the stability of plane waves in a material with positive nonlinearity. This behavior can not be found in continuous self-focusing materials where plane waves are unstable against perturbations. The stability of plane waves in the anomalous diffraction region, even at highest powers, has been experimentally verified. The interaction of high power beams and discrete solitons in arrays has been studied in detail. Of particular interest is the experimental verification of a theoretically predicted unique, all optical switching scheme, based on the interaction of a so called "blocker" soliton with a second beam. This switching method has been experimentally realized for both the coherent and incoherent case. Limitations of such schemes due to nonlinear losses at the required high powers are shown.
103

Optical Nonlinear Interactions In Dielectric Nano-suspensions

El-Ganainy, Ramy 01 January 2009 (has links)
This work is divided into two main parts. In the first part (chapters 2-7) we consider the nonlinear response of nano-particle colloidal systems. Starting from the Nernst-Planck and Smoluchowski equations, we demonstrate that in these arrangements the underlying nonlinearities as well as the nonlinear Rayleigh losses depend exponentially on optical intensity. Two different nonlinear regimes are identified depending on the refractive index contrast of the nanoparticles involved and the interesting prospect of self-induced transparency is demonstrated. Soliton stability is systematically analyzed for both 1D and 2D configurations and their propagation dynamics in the presence of Rayleigh losses is examined. We also investigate the modulation instability of plane waves and the transverse instabilities of soliton stripe beams propagating in nonlinear nano-suspensions. We show that in these systems, the process of modulational instability depends on the boundary conditions. On the other hand, the transverse instability of soliton stripes can exhibit new features as a result of 1D collapse caused by the exponential nonlinearity. Many-body effects on the systems' nonlinear response are also examined. Mayer cluster expansions are used in order to investigate particle-particle interactions. We show that the optical nonlinearity of these nano-suspensions can range anywhere from exponential to polynomial depending on the initial concentration and the chemistry of the electrolyte solution. The consequence of these inter-particle interactions on the soliton dynamics and their stability properties are also studied. The second part deals with linear and nonlinear properties of optical nano-wires and the coupled mode formalism of parity-time (PT) symmetric waveguides. Dispersion properties of AlGaAs nano-wires are studied and it is shown that the group velocity dispersion in such waveguides can be negative, thus enabling temporal solitons. We have also studied power flow in nano-waveguides and we have shown that under certain conditions, optical pulses propagating in such structures will exhibit power circulations. Finally PT symmetric waveguides were investigated and a suitable coupled mode theory to describe these systems was developed.
104

Dynamics and instability of flexible structures with sliding constraints

Koutsogiannakis, Panagiotis 22 December 2022 (has links)
Although instabilities and large oscillations are traditionally considered as conditions to be avoided in structures, a new design philosophy based on their exploitation towards the achievement of innovative mechanical features has been initiated in the last decade. In this spirit, instabilities are exploited towards the development of systems that can yield designed responses in the post-critical state. Further, the presence of oscillating constraints may allow for a stabilization of the dynamic response. These subjects entail a rich number of phenomena due to the non-linearity, so that the study of such mechanical systems becomes particularly complex, from both points of view of the mechanical modeling and of the computational tools. Two elastic structures are studied. The first consists of a flexible and extensible rod that is clamped at one end and constrained to slide along a given profile at the other. This feature allows one to study the effect of the axial stiffness of the rod on the tensile buckling of the system and on the compressive restabilization. A very interesting effect is that in a region of parameters double restabilization is found to occur, involving four critical compressive loads. Also, the mechanical system is shown to work as a novel force limiter that does not depend on sacrificial mechanical elements. Further, it is shown that the system can be designed to be multi-stable and suitable for integration in metamaterials. The second analyzed structure is a flexible but inextensible rod that is partially inserted into a movable rigid sliding sleeve which is kept vertical in a gravitational field. The system is analytically solved and numerically and experimentally investigated, when a horizontal sinusoidal input is prescribed at the sliding sleeve. In order to model the system, novel computational tools are developed, implementing the fully nonlinear inextensibility and kinematic constraints. It is shown that the mathematical model of the system agrees with the experimental data. Further, a study of the inclusion of dissipative terms is developed, to show that a steady motion of the rod can be accomplished by tuning the amplitude or the frequency of the sliding sleeve motion, in contrast with the situation in which a complete injection of the rod inside the sleeve occurs. A special discovery is that by slowly decreasing the frequency of the sleeve motion, the length of the rod outside the sleeve can be increased significantly, paving the way to control the rod’s end trajectory through frequency modulation.
105

Validation of a Physics-Based Low-Order Thermo-Acoustic Model of a Liquid-Fueled Gas Turbine Combustor and its Application for Predicting Combustion Driven Oscillations

Knadler, Michael January 2017 (has links)
No description available.
106

Direct forward gravure coating on unsupported web

Benkreira, Hadj, Cohu, O. January 1998 (has links)
Yes / This experimental study of forward gravure coating considers the effects of operating variables on air entrainment, ribbing instabilities and the thickness of the film formed. The data show that this coating method can yield very thin films of thickness of order of 15 - 20% at most of the equivalent cell depth of a gravure roller. Air free and non ribbed stable uniform films can however only be obtained in a narrow window of operating conditions at very low substrate capillary number (CaS ~ 0.02) equivalent to substrate speeds typically less than 20m/min. The paper draws a similarity with flow features observed with smooth forward roll coating and slide coating. It is shown that the onset of ribbing and the flux distribution between the gravure roller and the substrate at the exit of the nip obey approximately the same rules as in smooth forward roll coating, whereas the onset of air entrainment actually corresponds to a low-flow limit of coatability similar to that observed in slide coating.
107

Unstable cores are the source of instability in chemical reaction networks

Vassena, Nicola, Stadler, Peter F. 07 March 2024 (has links)
In biochemical networks, complex dynamical features such as superlinear growth and oscillations are classically considered a consequence of autocatalysis. For the large class of parameter-rich kinetic models, which includes Generalized Mass Ac- tion kinetics and Michaelis-Menten kinetics, we show that certain submatrices of the stoichiometric matrix, so-called unstable cores, are sufficient for a reaction network to admit instability and potentially give rise to such complex dynami- cal behavior. The determinant of the submatrix distinguishes unstable-positive feedbacks, with a single real-positive eigenvalue, and unstable-negative feedbacks without real-positive eigenvalues. Autocatalytic cores turn out to be exactly the unstable-positive feedbacks that are Metzler matrices. Thus there are sources of dynamical instability in chemical networks that are unrelated to autocatalysis. We use such intuition to design non-autocatalytic biochemical networks with su- perlinear growth and oscillations.
108

Vibration and Aeroelasticity of Advanced Aircraft Wings Modeled as Thin-Walled Beams--Dynamics, Stability and Control

Qin, Zhanming 17 October 2001 (has links)
Based on a refined analytical anisotropic thin-walled beam model, aeroelastic instability, dynamic aeroelastic response, active/passive aeroelastic control of advanced aircraft wings modeled as thin-walled beams are systematically addressed. The refined thin-walled beam model is based on an existing framework of the thin-walled beam model and a couple of non-classical effects that are usually also important are incorporated and the model herein developed is validated against the available experimental, Finite Element Anaylsis (FEA), Dynamic Finite Element (DFE), and other analytical predictions. The concept of indicial functions is used to develop unsteady aerodynamic model, which broadly encompasses the cases of incompressible, compressible subsonic, compressible supersonic and hypersonic flows. State-space conversion of the indicial function based unsteady aerodynamic model is also developed. Based on the piezoelectric material technology, a worst case control strategy based on the minimax theory towards the control of aeroelastic systems is further developed. Shunt damping within the aeroelastic tailoring environment is also investigated. The major part of this dissertation is organized in the form of self-contained chapters, each of which corresponds to a paper that has been or will be submitted to a journal for publication. In order to fullfil the requirement of having a continuous presentation of the topics, each chapter starts with the purely structural models and is gradually integrated with the involved interactive field disciplines. / Ph. D.
109

Ionospheric Scintillation Prediction, Modeling, and Observation Techniques for the August 2017 Solar Eclipse

Brosie, Kayla Nicole 16 August 2017 (has links)
A full solar eclipse is going to be visible from a range of states in the contiguous United States on August 21, 2017. Since the atmosphere of the Earth is charged by the sun, the blocking of the sunlight by the moon may cause short term changes to the atmosphere, such as density and temperature alterations. There are many ways to measure these changes, one of these being ionospheric scintillation. Ionospheric scintillation is rapid amplitude and phase fluctuations of signals passing through the ionosphere caused by electron density irregularities in the ionosphere. At mid-latitudes, scintillation is not as common of an occurrence as it is in equatorial or high-altitude regions. One of the theories that this paper looks into is the possibility of the solar eclipse producing an instability in the ionosphere that will cause the mid-latitude region to experience scintillations that would not normally be present. Instabilities that could produce scintillation are reviewed and altered further to model similar conditions to those that might occur during the solar eclipse. From this, the satellites that are being used are discuses, as is hardware and software tools were developed to record the scintillation measurements. Although this work was accomplished before the eclipse occurred, measurement tools were developed and verified along with generating a model that predicted if the solar eclipse will produce an instability large enough to cause scintillation for high frequency satellite downlinks. / Master of Science
110

Application of Multi-Port Mixing for Passive Suppression of Thermo-Acoustic Instabilities in Premixed Combustors

Farina, Jordan T. 29 March 2013 (has links)
The utilization of lean premixed combustors has become attractive to designers of industrial gas turbines as a means of meeting strict emissions standards without compromising efficiency.  Mixing the fuel and air prior to combustion allows for lower temperature flame zones, creating the potential for drastically reduced nitrous oxide emissions.  While effective, these systems are commonly plagued by combustion driven instabilities.  These instabilities produce large pressure and heat release rate fluctuations due to a resonant interaction between the combustor acoustics and the flame.  A primary feedback mechanism responsible for driving these systems is the propagation of Fuel/Air Ratio (FAR) fluctuations into the flame zone.  These fluctuations are formed inside of the premixing chamber when fuel is injected into and mixed with an oscillating air flow. The research presented here aimed to develop new technology for premixer designs, along with an application strategy, to avoid resonant thermo-acoustic events driven by FAR fluctuations.  A passive fuel control technique was selected for investigation and implementation. The selected technique utilized fuel injections at multiple, strategically placed axial locations to target and inhibit FAR fluctuations at the dominant resonant mode of the combustor.  The goal of this research was to provide an understanding of the mixing response inside a realistic premixer geometry and investigate the effectiveness of the proposed suppression technique. The mixing response was investigated under non-reacting flow conditions using a unique modular premixer.  The premixer incorporated variable axial fuel injection locations, as well as interchangeable mixing chamber geometries.  Two different chamber designs were tested: a simple annular chamber and one incorporating an axial swirler.  The mixing response of the simple annular geometry was well characterized, and it was found that multiple injections could be effectively configured to suppress the onset of an unstable event at very lean conditions. Energy dense flame zones produced at higher equivalence ratios, however, were found to be uncontrollable using this technique. Additionally, the mixing response of the swirl geometry was difficult to predict. This was found to be the result of large spatial gradients formed in the dynamic velocity field as acoustic waves passed through the swirl vanes. / Ph. D.

Page generated in 0.0467 seconds