31 |
Contribution au traitement du signal pour le contrôle de santé in situ de structures composites : application au suivi de température et à l’analyse des signaux d’émission acoustique / Signal processing for in situ Structural Health Monitoring of composite structures : application to the estimation of the temperature dynamics and to the study of acoustic emissionHamdi, Seif Eddine 12 October 2012 (has links)
Le contrôle de santé structural ou Structural Health Monitoring (SHM) des matériaux constitue une démarche fondamentale pour la maîtrise de la durabilité et de la fiabilité des structures en service. Au-delà des enjeux industriels et humains qui ne cessent de s’accroître en termes de sécurité et de fiabilité, le contrôle de santé doit faire face à des exigences de plus en plus élaborées. Les nouvelles stratégies de contrôle de santé doivent non seulement détecter et identifier l’endommagement mais aussi quantifier les différents phénomènes qui en sont responsables. Pour atteindre cet objectif, il est nécessaire d’accéder à une meilleure connaissance des processus d’endommagement. Par ailleurs, ceux-ci surviennent fréquemment sous l’effet de sollicitations mécaniques et environnementales. Ainsi, il est indispensable, d’une part, d’élaborer des méthodes de traitement des signaux permettant d’estimer les effets des conditions environnementales et opérationnelles, dans un contexte de l’analyse des événements précurseurs des mécanismes d’endommagement, et, d’autre part, de définir les descripteurs d’endommagement les plus adaptés à cette analyse. Cette étude propose donc des méthodes de traitement du signal permettant d’atteindre cet objectif, dans un premier temps, pour l’estimation des effets externes sur les ondes multidiffusées dans un contexte de contrôle de santé actif et, dans un second temps, pour l’extraction d’un indicateur d’endommagement à partir de l’analyse des signaux d’émission acoustique dans un contexte de contrôle de santé passif. Dans la première partie de ce travail, quatre méthodes de traitement du signal sont proposées. Celles-ci permettent de prendre en compte les variations des conditions environnementales dans la structure, qui dans le cadre de cette thèse, se sont limitées au cas particulier du changement de la température. En effet, les variations de température ont pour effet de modifier les propriétés mécaniques du matériau et par conséquent la vitesse de propagation des ondes ultrasonores. Ce phénomène entraîne alors une dilatation temporelle des signaux acoustiques qu’il convient d’estimer afin de suivre les variations de température. Quatre estimateurs de coefficients de dilatation sont alors étudiés : Il s’agit de l’intercorrélation à fenêtre glissante, utilisée comme méthode de référence, la méthode du stretching, l’estimateur à variance minimale et la transformée exponentielle. Les deux premières méthodes ont été déjà validées dans la littérature alors que les deux dernières ont été développées spécifiquement dans le cadre de cette étude. Par la suite, une évaluation statistique de la qualité des estimations est menée grâce à des simulations de Monte-Carlo utilisant des signaux de synthèse. Ces signaux sont basés sur un modèle de signal multidiffusé prenant en compte l’influence de la température. Une estimation sommaire de la complexité algorithmique des méthodes de traitement du signal complète également cette phase d’évaluation. Enfin, la validation expérimentale des méthodes d’estimation est réalisée sur deux types de matériaux : Tout d’abord, dans une plaque d’aluminium, milieu homogène dont les caractéristiques sont connues, puis, dans un second temps dans un milieu fortement hétérogène prenant la forme d’une plaque composite en verre/epoxy. Dans ces expériences, les plaques sont soumises à différentes températures dans un environnement thermique contrôlé. Les estimations de température sont alors confrontées à un modèle analytique décrivant le comportement du matériau. La seconde partie de ce travail concerne la caractérisation in situ des mécanismes d’endommagement par émission acoustique dans des matériaux hétérogènes. Les sources d’émission acoustique génèrent des signaux non stationnaires... / Structural health monitoring (SHM) of materials is a fundamental measure to master thedurability and the reliability of structures in service. Beyond the industrial and human issuesever increasing in terms of safety and reliability, health monitoring must cope with demandsincreasingly sophisticated. New health monitoring strategies must not only detect and identifydamage but also quantify the various phenomena involved in it. To achieve this objective, itis necessary to reach a better understanding of the damage process. Moreover, they frequentlyoccur as a result of mechanical and environmental stresses. Thus, it is essential, first, to developsignal processing methods for estimating the effects of environmental and operational conditions,in the context of the analysis of precursor events of damage mechanisms, and on theother hand, to define the damage descriptors that are the most suitable to this analysis. Thisstudy proposes signal processing methods to achieve this goal. At first, to the estimation ofexternal effects on the scattered waves in an active health control context, in a second step, tothe extraction of a damage indicator from the signals analysis of acoustic emission in a passivehealth monitoring context.In the first part of this work, four signal processing methods are proposed. These allow takinginto account the variation of environmental conditions in the structure, which in this thesis,were limited to the particular case of temperature change. Indeed, temperature changes have theeffect of altering the mechanical properties of the material and therefore the propagation velocityof ultrasonic waves. This phenomenon then causes a dilation of the acoustic signals that shouldbe estimated in order to monitor changes in temperature. Four estimators of dilation coefficientsare then studied: the intercorrelation sliding window, used as reference method, the stretchingmethod, the minimum variance estimator and the exponential transform. The first two methodshave already been validated in the literature while the latter two were developed specificallyin the context of this study. Thereafter, a statistical evaluation of the quality of estimates isconducted through Monte Carlo simulations using synthetic signals. These signals are basedon a scattered signal model taking into account the influence of temperature. A raw estimateof the computational complexity of signal processing methods also completes this evaluationphase. Finally, the experimental validation of estimation methods is performed on two types ofmaterial: First, in an aluminum plate, homogeneous medium whose characteristics are known,then, in a second step in a highly heterogeneous environment in the form of a compositeglass/epoxy plate. In these experiments, the plates are subjected to different temperatures in acontrolled thermal environment. The temperature estimates are then faced with an analyticalmodel describing the material behavior.The second part of this work concerns in situ characterization of damage mechanisms byacoustic emission in heterogeneous materials. Acoustic emission sources generate non-stationarysignals. The Hilbert-Huang transform is thus proposed for the discrimination of signals representativeof four typical sources of acoustic emission in composites: matrix cracking, debondingfiber/matrix, fiber breakage and delamination. A new time-frequency descriptor is then definedfrom the Hilbert-Huang transform and is introduced into an online classification algorithm. Amethod of unsupervised classification, based on the k-means method, is then used to discriminatethe sources of acoustic emission and the data segmentation quality is evaluated. Thesignals are recorded from blank samples, using piezoelectric sensors stuck to the surface of thematerial and sensitive samples (sensors integrated within the material)...
|
32 |
Diagnosis of electric induction machines in non-stationary regimes working in randomly changing conditionsVedreño Santos, Francisco Jose 02 December 2013 (has links)
Tradicionalmente, la detección de faltas en máquinas eléctricas se basa en el uso de la Transformada Rápida de Fourier ya que la mayoría de las faltas pueden ser diagnosticadas con ella con seguridad si las máquinas operan en condiciones de régimen estacionario durante un intervalo de tiempo razonable.
Sin embargo, para aplicaciones en las que las máquinas operan en condiciones de carga y velocidad fluctuantes (condiciones no estacionarias) como por ejemplo los aerogeneradores, el uso de la Transformada Rápida de Fourier debe ser reemplazado por otras técnicas.
La presente tesis desarrolla una nueva metodología para el diagnóstico de máquinas de inducción de rotor de jaula y rotor bobinado operando en condiciones no estacionarias, basada en el análisis de las componentes de falta de las corrientes en el plano deslizamiento frecuencia. La técnica es aplicada al diagnóstico de asimetrías estatóricas, rotóricas y también para la falta de excentricidad mixta.
El diagnóstico de las máquinas eléctricas en el dominio deslizamiento-frecuencia confiere un carácter universal a la metodología ya que puede diagnosticar máquinas eléctricas independientemente de sus características, del modo en el que la velocidad de la máquina varía y de su modo de funcionamiento (motor o generador).
El desarrollo de la metodología conlleva las siguientes etapas:
(i) Caracterización de las evoluciones de las componentes de falta de asimetría estatórica, rotórica y excentricidad mixta para las máquinas de inducción de rotores de jaula y bobinados en función de la velocidad (deslizamiento) y la frecuencia de alimentación de la red a la que está conectada la máquina.
(ii) Debido a la importancia del procesado de la señal, se realiza una introducción a los conceptos básicos del procesado de señal antes de centrarse en las técnicas actuales de procesado de señal para el diagnóstico de máquinas eléctricas.
(iii) La extracción de las componentes de falta se lleva a cabo a través de tres técnicas de filtrado diferentes: filtros basados en la Transformada Discreta Wavelet, en la Transformada Wavelet Packet y con una nueva técnica de filtrado propuesta en esta tesis, el Filtrado Espectral. Las dos primeras técnicas de filtrado extraen las componentes de falta en el dominio del tiempo mientras que la nueva técnica de filtrado realiza la extracción en el dominio de la frecuencia.
(iv) La extracción de las componentes de falta, en algunos casos, conlleva el desplazamiento de la frecuencia de las componentes de falta. El desplazamiento de la frecuencia se realiza a través de dos técnicas: el Teorema del Desplazamiento de la Frecuencia y la Transformada Hilbert.
(v) A diferencia de otras técnicas ya desarrolladas, la metodología propuesta no se basa exclusivamente en el cálculo de la energía de la componente de falta sino que también estudia la evolución de la frecuencia instantánea de ellas, calculándola a través de dos técnicas diferentes (la Transformada Hilbert y el operador Teager-Kaiser), frente al deslizamiento. La representación de la frecuencia instantánea frente al deslizamiento elimina la posibilidad de diagnósticos falsos positivos mejorando la precisión y la calidad del diagnóstico. Además, la representación de la frecuencia instantánea frente al deslizamiento permite realizar diagnósticos cualitativos que son rápidos y requieren bajos requisitos computacionales.
(vi) Finalmente, debido a la importancia de la automatización de los procesos industriales y para evitar la posible divergencia presente en el diagnóstico cualitativo, tres parámetros objetivos de diagnóstico son desarrollados: el parámetro de la energía, el coeficiente de similitud y los parámetros de regresión. El parámetro de la energía cuantifica la severidad de la falta según su valor y es calculado en el dominio del tiempo y en el dominio de la frecuencia (consecuencia de la extracción de las componentes de falta en el dominio de la frecuencia). El coeficiente de similitud y los parámetros de regresión son parámetros objetivos que permiten descartar diagnósticos falsos positivos aumentando la robustez de la metodología propuesta.
La metodología de diagnóstico propuesta se valida experimentalmente para las faltas de asimetría estatórica y rotórica y para el fallo de excentricidad mixta en máquinas de inducción de rotor de jaula y rotor bobinado alimentadas desde la red eléctrica y desde convertidores de frecuencia en condiciones no estacionarias estocásticas. / Vedreño Santos, FJ. (2013). Diagnosis of electric induction machines in non-stationary regimes working in randomly changing conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34177
|
33 |
Método de descomposición modal no estacionaria basado en representación de espacio de estados con aplicación al análisis de señales ECGAvendaño, Luis Enrique 28 October 2024 (has links)
[ES] Esta tesis de doctorado está dedicada al problema de descomposición de señales no estacionarias en componentes modales, entendida como componentes oscilatorias independientes, con amplitud y fase dependientes del tiempo. Para este fin, se propone un enfoque metodológico basado en representaciones en espacio de estados diagonales en bloques. Una contribución teórica primaria de esta tesis consiste en demostrar que la respuesta de un sistema de espacio de estados diagonal en bloques puede ser representada en una forma modal con amplitudes y frecuencias dependientes del tiempo. Subsecuentemente, construyendo sobre este resultado, un marco de trabajo basado en filtros de Kalman se propone para la descomposición modal de señales no estacionarias. Como resultado, una familia de métodos paramétricos para la descomposición modal de señales no estacionarias univariadas y multivariadas basadas en representaciones de espacio de estados diagonales en bloques y filtros de Kalman ha sido postulada. La representación básica está construida en bloques de segundo orden, cada uno de los cuales representa los componentes en fase y en cuadratura de un único componente oscilatorio no estacionario. Así, la respuesta total es construida como la suma ponderada de cada uno de estos modos. La identificación de estos modelos requiere la estimación conjunta de las trayectorias y los parámetros modales dependientes del tiempo, así como los hiperparámetros del modelo, constituidos por la matriz de mezcla de modos, las matrices de covarianza del vector de estados, de parámetros y del ruido de medición, y las condiciones iniciales. Para este propósito, un algoritmo de Expectación-Maximización ha sido adaptado como parte de esta tesis. La metodología obtenida es entonces evaluada en la descomposición y eliminación de ruido de registros electrocardiográficos (ECG), los cuales consisten en componentes no-estacionarias pseudo-periódicas y son susceptibles a diferentes tipos de interferencias. La estructura de estas señales las hace susceptibles a las descomposiciones modales basadas propuestas en esta tesis. A diferencia de otros métodos populares de descomposición de señales, las descomposiciones obtenidas con la metodología propuesta proveen componentes oscilatorios con interpretabilidad física y que proveen resultados consistentes para señales multivariadas, como en el caso de registros de ECG con múltiples derivaciones.
Otra estrategia que se desarrolló en este proyecto investigativo lo constituye la aplicación de la transformada delta u operador de Euler al filtro de Kalman, esto condujo a resultados de alta precisión en la extracción de componentes de banda angosta.
La metodología propuesta constituye una herramienta confiable para la descomposición modal en línea de señales no estacionarias multicomponentes, con resultados excelentes / [CA] Esta tesi de doctorat està dedicada al problema de descomposició de senyals no-estacionaris en components modals, entesa com a components oscil·latòries independents amb amplitud i fase dependents del temps. Per a este fi, es proposa un enfocament metodològic basat en representacions en espai d'estats diagonals en blocs. Una contribució teòrica primària d'esta tesi consistix a demostrar que la resposta d'un sistema d'espai d'estats diagonal en blocs pot ser representada en una forma modal amb amplituds i freqüències dependents del temps. Subseqüentment, construint sobre este resultat, un marc de treball basat en filtres de Kalman es proposa per a la descomposició modal de senyals no estacionaris. Com a resultat, una família de mètodes paramètrics per a la descomposició modal de senyals no estacionaris univariadas i multivariades basades en representacions d'espai d'estats diagonals en blocs i filtres de Kalman ha sigut postulada. La representació bàsica està construïda en blocs de segon ordre, cadascun dels quals representa els components en fase i en quadratura d'un únic component oscil·latori no estacionari. Així, la resposta total és construïda com la suma ponderada de cadascun d'estos modes. La identificació d'estos models requerix l'estimació conjunta de les trajectòries i els paràmetres modals dependents del temps, així com els hiperparámetros del model, constituïts per la matriu de mescla de modes, les matrius de covariància del vector d'estats, de paràmetres i del soroll de mesurament, i les condicions inicials. Per a este propòsit, un algorisme d'Expectació-Maximització ha sigut adaptat com a part d'esta tesi. La metodologia obtinguda és llavors avaluada en la descomposició i eliminació de soroll de registres electrocardiogràfics (ECG), els quals consistixen en components no-estacionàries pseudo-periòdiques i són susceptibles a diferents tipus d'interferències. L'estructura d'estos senyals les fa susceptibles a les descomposicions modals basades propostes en esta tesi. A diferència d'altres mètodes populars de descomposició de senyals, les descomposicions obtingudes amb la metodologia proposada proveïxen components oscil·latoris amb interpretabilidad física i que proveïxen resultats consistents per a senyals multivariats, com en el cas de registres d'ECG amb múltiples derivacions.
Una altra estratègia que es va desenvolupar en este projecte investigativo el constituïx l'aplicació de la transformada delta o operador d'Euler al filtre de Kalman, això va conduir a resultats d'alta precisió en l'extracció de components de banda estreta.
La metodologia proposada constituïx una eina de confiança per a la descomposició modal en línia de senyals no estacionaris multicomponents, amb resultats excel·lents. / [EN] This PhD thesis is devoted to the problem of the decomposition of non-stationary signals in modal components, understood as independent oscillatory components with time-dependent amplitude and frequency. To this end, a methodological approach based on diagonal time-dependent state space models is postulated. A primary theoretical contribution of this work is to demonstrate that the response of a system in diagonal time-dependent state space form can be cast in a modal form characterized by time-dependent amplitudes and frequencies. Subsequently, building up on this result, a Kalman filter based framework for non-stationary modal decomposition is proposed. As a result, a family of parametric modal decomposition methods is postulated for univariate and multivariate non-stationary signals based on block-diagonal time-dependent state space representations and Kalman filtering/smoothing. The representation is built upon second order blocks, each representing the in-phase and quadrature components of a single non-stationary oscillatory component. The total response is then constructed as the weighted sum of each of these modes. Accordingly, the model identification involves the joint estimation of the modal trajectories and the time-dependent modal parameters, along with the model hyperparameters, constituted by the mode mixing matrix, the state, parameter and noise covariances, and initial conditions. A tailored Expectation-Maximization algorithm is designed for this purpose as part of this thesis. The obtained methodology is assessed in the decomposition and denoising of electrocardiographic (ECG) signals, which consist of pseudo-periodic non-stationary signals and are susceptible to significant interference. The ECG signal structure makes them amenable to the proposed non-stationary modal decompositions. In contrast to other popular non-stationary signal decomposition methods, the proposed method provides a physically meaningful decomposition of oscillatory components, with consistent results for multivariate signals, such as multi-lead ECG records.
Another strategy that was developed in this research project is the application of the delta transform or Euler operator to the Kalman filter, which led to highly precise results in extracting narrowband components.
The proposed methodology constitutes a reliable tool for on-line modal decomposition of multi-component non-stationary signals, with results comparable and even better than other state-of-the-art methods. / Avendaño, LE. (2024). Método de descomposición modal no estacionaria basado en representación de espacio de estados con aplicación al análisis de señales ECG [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/211185
|
34 |
Parameters Selection for Optimising Time-Frequency Distributions and Measurements of Time-Frequency Characteristics of Nonstationary SignalsSucic, Victor January 2004 (has links)
The quadratic class of time-frequency distributions (TFDs) forms a set of tools which allow to effectively extract important information from a nonstationary signal. To determine which TFD best represents the given signal, it is a common practice to visually compare different TFDs' time-frequency plots, and select as best the TFD with the most appealing plot. This visual comparison is not only subjective, but also difficult and unreliable especially when signal components are closely-spaced in the time-frequency plane. To objectively compare TFDs, a quantitative performance measure should be used. Several measures of concentration/complexity have been proposed in the literature. However, those measures by being derived with certain theoretical assumptions about TFDs are generally not suitable for the TFD selection problem encountered in practical applications. The non-existence of practically-valuable measures for TFDs' resolution comparison, and hence the non-existence of methodologies for the signal optimal TFD selection, has significantly limited the use of time-frequency tools in practice. In this thesis, by extending and complementing the concept of spectral resolution to the case of nonstationary signals, and by redefining the set of TFDs' properties desirable for practical applications, we define an objective measure to quantify the quality of TFDs. This local measure of TFDs' resolution performance combines all important signal time-varying parameters, along with TFDs' characteristics that influence their resolution. Methodologies for automatically selecting a TFD which best suits a given signal, including real-life signals, are also developed. The optimisation of the resolution performances of TFDs, by modifying their kernel filter parameters to enhance the TFDs' resolution capabilities, is an important prerequisite in satisfying any additional application-specific requirements by the TFDs. The resolution performance measure and the accompanying TFDs' comparison criteria allow to improve procedures for designing high-resolution quadratic TFDs for practical time-frequency analysis. The separable kernel TFDs, designed in this way, are shown to best resolve closely-spaced components for various classes of synthetic and real-life signals that we have analysed.
|
Page generated in 0.0736 seconds