• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pyrosequencing Analysis of irs1 Methylation Levels in Schizophrenia With Tardive Dyskinesia

Li, Yanli, Wang, Kesheng, Zhang, Ping, Huang, Junchao, Liu, Ying, Wang, Zhiren, Lu, Yongke, Tan, Shuping, Yang, Fude, Tan, Yunlong 01 January 2020 (has links)
Tardive dyskinesia (TD) is a serious side effect of certain antipsychotic medications that are used to treat schizophrenia (SCZ) and other mental illnesses. The methylation status of the insulin receptor substrate 1 (IRS1) gene is reportedly associated with SCZ; however, no study, to the best of the authors' knowledge, has focused on the quantitative DNA methylation levels of the IRS1 gene using pyrosequencing in SCZ with or without TD. The present study aimed to quantify DNA methylation levels of 4 CpG sites in the IRS1 gene using a Chinese sample including SCZ patients with TD and without TD (NTD) and healthy controls (HCs). The general linear model (GLM) was used to detect DNA methylation levels among the 3 proposed groups (TD vs. NTD vs. HC). Mean DNA methylation levels of 4 CpG sites demonstrated normal distribution. Pearson's correlation analysis did not reveal any significant correlations between the DNA methylation levels of the 4 CpG sites and the severity of SCZ. GLM revealed significant differences between the 3 groups for CpG site 1 and the average of the 4 CpG sites (P=0.0001 and P=0.0126, respectively). Furthermore, the TD, NTD and TD + NTD groups demonstrated lower methylation levels in CpG site 1 (P=0.0003, P<0.0001 and P<0.0001, respectively) and the average of 4 CpG sites (P=0.0176, P=0.0063 and P=0.003, respectively) compared with the HC group. The results revealed that both NTD and TD patients had significantly decreased DNA methylation levels compared with healthy controls, which indicated a significant association between the DNA methylation levels of the IRS1 gene with SCZ and TD.
2

Insulin signalling in human adipocytes : mechanisms of insulin resistance in type 2 diabetes

Danielsson, Anna January 2007 (has links)
Prevalensen av fetma ökar drastiskt i stora delar av världen och utgör en stor riskfaktor för att utveckla insulinresistens och typ 2 diabetes. Fettväven kan bli mycket stor om för mycket energi tas upp av kroppen. Vid extrem övervikt är fettväven i kroppen i ett stresstillstånd, vilket gör att risken för att utveckla metabola sjukdomar som t.ex. typ 2 diabetes ökar. Fett lagras i olika fettdepåer i kroppen. Inlagringen i djupare kroppsdelar, runt och i inre organ s.k. visceralt fett, skiljer sig från fettväven som lagras direkt under huden s.k. subkutant fett. Nyare rön visar att mer visceral fettväv ökar risken för att utveckla insulinresistens och typ 2 diabetes. Fettcellen är tillsammans med muskel- och leverceller de viktigaste för glukosmetabolismen. Fettcellen är en stor cell, som man lätt kan se med blotta ögat. Storleken på ellerna varierar dock kraftigt i en och samma fettvävnad. Upptag av glukos från maten vi äter regleras av hormonet insulin. Insulinresistens är ett tillstånd då cellerna svarar dåligt på insulin, vilket gör att glukoshalten i blodet ökar. Detta förekommer vid typ 2 diabetes, men även vid andra tillstånd där cellerna blir stressade, t.ex. kirurgiska ingrepp. Insulinsignaleringen i fettcellen är komplex och signalöverföringen inne i cellen sker främst via en kaskad av fosforyleringar, där olika proteiner i en signalkedja fosforyleras eller defosforyleras. Slutligen leder denna fosforyleringskaskad till insulinets sluteffekter som t.ex. upptag av glukos, proteinsyntes och celltillväxt. Efter att insulin bundit till och fosforylerat/aktiverat insulinreceptorn delas signalen upp inne i cellen i två huvudvägar; den metabola signalvägen och den mitogena signalvägen. Insulinreceptorsubstrat 1, IRS1, är ett stort protein som insulinreceptorn verkar direkt på. Fosforylering av aminosyran tyrosin på IRS1 är mycket viktigt för fortsatt insulinsignalering i fettcellen. IRS1 fosforyleras även på aminosyran serin som svar på bl.a. insulin. Serinfosforyleringen av IRS1 hämmar eller stimulerar insulinsignaleringen, ofta genom återkoppling av insulinsignalen. Syftet med den här avhandlingen är att beskriva möjliga cellulära mekanismer i insulinsignaleringen vid insulinresistens som resultat av kirurgisk stress eller vid typ 2 diabetes i fettceller från människa. Häri har upptaget av glukos analyserats och jämförts i fettceller från olika fettdepåer. Viscerala fettceller har högre basalt och insulinstimulerat glukosupptag och mer glucostransportörprotein än subkutana fettceller. Däremot är det ingen skillnad i insulinkänslighet angående glukosupptaget i de olika typerna av fettceller. Vidare fann vi att den kirurgiskt orsakade insulinresistensen hos subkutana fettceller från människa återgår till det normala efter övernattinkubering av cellerna i odlingsmedium. Insulinresistensen vid typ 2 diabetes är däremot permanent och har en annan mekanism än den reversibla, stress-relaterade insulinresistensen. Insulinresistansen vid typ 2 diabetes beror på att signalöverföringen mellan olika proteiner i cellen är defekt. Insulinreceptorns förmåga att fosforylera IRS1 på aminosyran tyrosin är nedsatt hos patienter med typ 2 diabetes. Fosforyleringen av IRS1 på serin 307 (i den humana sekvensen) ökar snabbt hos icke-diabetiska fettceller som svar på insulin. Denna serinfosforylering verkar behövas för att IRS1 effektivt ska tyrosinfosforyleras och därmed leda insulinsignalen vidare inne i cellen. Fosforyleringen av IRS1 på serin 307 är kraftigt nedsatt hos subkutana fettceller från patienter med typ 2 diabetes. Fosforyleringen av IRS1 på serin 312 är däremot liknande i fettceller från icke-diabetiker och diabetiker (Öst et.al. (2007) Faseb.J. doi: 10.1096/fj.07-8173com). Fosforyleringen av IRS1 på serin 312 är mest involverad i insulinsignaleringens negativa återkoppling. Fosforyleringen av serin 307 sker snabbt och vid låga insulinkoncentrationer, medan fosforyleringen på serin 312 sker först efter lång inkubering och vid höga insulinkoncentrationer. Detta är en ny mekanism på cellulär nivå som möjligen kan beskriva insulinresistansen i fettceller från människa. Tillsammans styrs återkopplingen via den stimulerande fosforyleringen (serin 307) eller den hämmande fosforyleringen (serin 312) och kontrollerar insulinsignaleringen i cellen. Fosforyleringarna sker möjligen via samma proteinkinas och/eller proteinfosfatas och kan bli mål för terapeutiska läkemedel mot typ 2 diabetes i framtiden. / The prevalence of obesity is increasing in most parts of the world and is a strong risk factor for the development of insulin resistance and type 2 diabetes. Adipose tissue is important in whole body energy balance and grows in size with excess energy intake. Adipose tissue in different regions of the body has different characteristics and adipocytes coming from intraabdominal fat depots, are more associated with insulin resistance than adipocytes from subcutaneous fat depots. Insulin signalling is complex and consists of two major signalling pathways in the cell; the metabolic signalling pathway and the mitogenic signalling pathway. After insulin binding to the insulin receptor a cascade of protein phosphorylations and dephosphorylations is started, eventually leading to the target effects of the hormone. Tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), a protein directly downstream of the insulin receptor, is essential for further insulin signalling. Serine phosphorylation of IRS1 also affects insulin signalling through inhibitory or stimulatory effects. Adipocytes are together with muscle cells and liver cells central in the development of type 2 diabetes. The focus of this thesis is to describe mechanisms in insulin signalling in primary human adipocytes in insulin resistant states, surgical stress or type 2 diabetes. Visceral adipocytes from humans were analysed and compared to subcutaneous adipocytes. Visceral adipocytes were slightly bigger than subcutaneous adipocytes. Furthermore, visceral adipocytes had an increased level of the glucose transporterprotein GLUT4 and a higher basal and insulin-stimulated glucose uptake, but the sensitivity to insulin was the same. Here it was found that surgical insulin resistance is reversible after overnight incubation of the adipocytes and the impaired insulin sensitivity is at the level between IRS1 and PKB/Akt in insulin signalling. In contrast, the insulin resistance in type 2 diabetes is irreversible and the impaired insulin sensitivity is at the level of insulin receptor-mediated tyrosine phosphorylation of IRS1. Adipocytes from patients with type 2 diabetes were investigated and it was found that diabetic adipocytes have an attenuated insulin-stimulated phosphorylation of IRS1 at serine 307 (corresponding to serine 302 in the mouse sequence). In adipocytes from non-diabetic individuals, the phosphorylation of IRS1 at serine 307 occurred rapidly at low concentrations of insulin. This phosphorylation was associated with the tyrosine phosphorylation of IRS1. The phosphorylation of IRS1 at serine 312 (corresponding to serine 307 in the mouse sequence) in response to insulin was similar in adipocytes from non-diabetic individuals and from patients with type 2 diabetes (Öst et.al. (2007) Faseb.J. doi: 10.1096/fj.07-8173com) and occurred only at high concentrations after prolonged incubation with insulin. This thesis reports the investigation of mechanisms in insulin signalling at a cellular and molecular level in primary human adipocytes. The insulin resistance resulted from surgical stress is different from that in type 2 diabetes and adipocytes from patients with type 2 diabetes have impaired insulin sensitivity at the level of IRS1. Together, the phosphorylation of IRS1 at serine 307 and serine 312 may control insulin signalling through feedback mechanisms in primary human adipocytes.
3

Characterization of virus-host interactions using cellular thermal shift assays (CETSA)

Lissner, Robin January 2021 (has links)
No description available.
4

Insulin Resistance and Muscle Insulin Receptor Substrate-1 Serine Hyperphosphorylation

Stuart, Charles A., Howell, Mary E. A., Cartwright, Brian M., McCurry, Melanie P., Lee, Michelle L., Ramsey, Michael W., Stone, Michael H. 01 December 2014 (has links)
Insulin resistance in metabolic syndrome subjects is profound in spite of muscle insulin receptor and insulin-responsive glucose transporter (GLUT4) expression being nearly normal. Insulin receptor tyrosine kinase phosphorylation of insulin receptor substrate-1 (IRS-1) at Tyr896 is a necessary step in insulin stimulation of translocation of GLUT4 to the cell surface. Serine phosphorylation of IRS-1 by some kinases diminishes insulin action in mice. We evaluated the phosphorylation status of muscle IRS-1 in 33 subjects with the metabolic syndrome and seventeen lean controls. Each underwent euglycemic insulin clamps and a thigh muscle biopsy before and after 8 weeks of either strength or endurance training. Muscle IRS-1 phosphorylation at six sites was quantified by immunoblots. Metabolic syndrome muscle IRS-1 had excess phosphorylation at Ser337 and Ser636 but not at Ser307, Ser789, or Ser1101. Ser337 is a target for phosphorylation by glycogen synthase kinase 3 (GSK3) and Ser636 is phosphorylated by c-Jun N-terminal kinase 1 (JNK1). Exercise training without weight loss did not change the IRS-1 serine phosphorylation. These data suggest that baseline hyperphosphorylation of at least two key serines within muscle IRS-1 diminishes the transmission of the insulin signal and thereby decreases the insulin-stimulated translocation of GLUT4. Excess fasting phosphorylation of muscle IRS-1 at Ser636 may be a major cause of the insulin resistance seen in obesity and might prevent improvement in insulin responsiveness when exercise training is not accompanied by weight loss.
5

Molecular mechanisms of insulin resistance in glucagon-producing alpha cells / Molekulare Mechanismen der Insulinresistenz in Glukagon-produzierenden Alphazellen

González Aguirre, Miranda 02 November 2006 (has links)
No description available.

Page generated in 0.0894 seconds