1 |
Quantile-based methods for prediction, risk measurement and inferenceAlly, Abdallah K. January 2010 (has links)
The focus of this thesis is on the employment of theoretical and practical quantile methods in addressing prediction, risk measurement and inference problems. From a prediction perspective, a problem of creating model-free prediction intervals for a future unobserved value of a random variable drawn from a sample distribution is considered. With the objective of reducing prediction coverage error, two common distribution transformation methods based on the normal and exponential distributions are presented and they are theoretically demonstrated to attain exact and error-free prediction intervals respectively. The second problem studied is that of estimation of expected shortfall via kernel smoothing. The goal here is to introduce methods that will reduce the estimation bias of expected shortfall. To this end, several one-step bias correction expected shortfall estimators are presented and investigated via simulation studies and compared with one-step estimators. The third problem is that of constructing simultaneous confidence bands for quantile regression functions when the predictor variables are constrained within a region is considered. In this context, a method is introduced that makes use of the asymmetric Laplace errors in conjunction with a simulation based algorithm to create confidence bands for quantile and interquantile regression functions. Furthermore, the simulation approach is extended to an ordinary least square framework to build simultaneous bands for quantiles functions of the classical regression model when the model errors are normally distributed and when this assumption is not fulfilled. Finally, attention is directed towards the construction of prediction intervals for realised volatility exploiting an alternative volatility estimator based on the difference of two extreme quantiles. The proposed approach makes use of AR-GARCH procedure in order to model time series of intraday quantiles and forecast intraday returns predictive distribution. Moreover, two simple adaptations of an existing model are also presented.
|
2 |
Studies on the Estimation of Integrated Volatility for High Frequency DataLin, Liang-ching 26 July 2007 (has links)
Estimating the integrated volatility of high frequency realized prices is an important
issue in microstructure literature. Bandi and Russell (2006) derived the optimal-sampling
frequency, and Zhang et al. (2005) proposed a "two-scales estimator" to solve the problem.
In this study, we propose a new estimator based on a signal to noise ratio statistic with
convergence rate of Op (n^(−1/ 4) ). The method is applicable to both constant and stochastic
volatility models and modi¡Âes the Op (n^(−1/ 6) ) convergence rate of Zhang et al. (2005). The
proposed estimator is shown to be asymptotic e¡Ócient as the maximum likelihood estimate
for the constant volatility case. Furthermore, unbiased estimators of the two elements, the
variance of the microstructure noise and the fourth moment of the realized log returns, are
also proposed to facilitate the estimation of integrated volatility. The asymptotic prop-
erties and e®ectiveness of the proposed estimators are investigated both theoretically and
via simulation study.
|
3 |
Online Monitoring Systems of Market Reaction to Realized Return VolatilityLiu, Chi-chin 23 July 2008 (has links)
Volatility is an important measure of stock market performance. Competing securities market makers keep abreast of the pace of volatility change by adjusting the bid-ask spreads and bid/ask quotes properly and efficiently. For intradaily high frequency transaction data, the observed volatility of stock returns can be decomposed into the sum of the two components - the realized volatility and the volatility due to microstructure noise. The quote adjustments of the market makers comprise part of the microstructure noise. In this study, we define the ratio of the realized integrated volatility to the observed squared returns as the proportion of realized integrated volatility (PIV). Time series models with generalized error distributed innovations are fitted to the PIV data based on 70-minute returns of NYSE tick-to-tick transaction data. Both retrospective and dynamic online control charts of the PIV data are established based on the fitted time series models. The McNemar test supports that the dynamic online control charts have the same power of detecting out of control events as the retrospective control charts. The Wilcoxon signedrank test is adopted to test the differences between the changes of the market maker
volatility and the realized volatility for in-control and out-of-control periods, respectively. The results reveals that the points above the upper control limit are related to the situation when the market makers can not keep up with the realized integrated volatility, whereas the points below the lower control limit indicate excessive reaction of the the market makers.
|
4 |
Volatility & The Black Swan : Investigation of Univariate ARCH-models, HARRV and Implied Volatility in Nasdaq100 amid Covid19Tingstedt, Karl January 2022 (has links)
Covid19 hit the world’s financial markets by surprise in March 2020 and ensuing volatility marked an end to the prior low-volatility environment. This Black Swan engendered numerous publications establishing how the equity market responded to the exogenous shock. However, there is no applicable comparison to Nasdaq100 regarding how models perform during extreme conditions such as ante, amid and post Covid19. Furthermore, goodness of fit together with forecasting accuracy are further examined in the light of new intra-day data from Oxford Man Institute covering this time-period. This thesis presents a comparison of volatility models incorporating economic intuition, sentiment, historical values of volatility and stochastics. By exploiting intra-day at 5 min interval the trade-off between noise and loss of valuable information effectively kept at a minimum yielding considerable robustness to the thesis’ result. Linear ARCH-models, Implied Volatility and HARRV applied with the addition of several different combinations of hold-out periods enable multiple vantagepoints for evaluation. This thesis finds HARRV’s series of one-step ahead prediction of future conditional volatility to be superior throughout all hold-out periods. I am able to present empirical evidence supporting the idea that HARRV’s additive cascades of volatility is superior to sentiment-driven implied volatility and ARCH-models pertaining to Nasdaq100.
|
5 |
Optimizable Multiresolution Quadratic Variation Filter For High-frequency Financial DataSen, Aykut 01 February 2009 (has links) (PDF)
As the tick-by-tick data of financial transactions become easier to reach, processing that much of information in an efficient and correct way to estimate the integrated volatility gains importance. However, empirical findings show that, this much of data may become unusable due to microstructure effects. Most common way to get over this problem is to sample the data in equidistant intervals of calendar, tick or business time scales. The comparative researches
on that subject generally assert that, the most successful sampling scheme is a calendar time sampling which samples the data every 5 to 20 minutes. But this generally means throwing out more than 99 percent of the data. So it is obvious that a more efficient sampling method is needed. Although there are some researches on using alternative techniques, none of them is proven to be the best.
Our study is concerned with a sampling scheme that uses the information in different scales of frequency and is less prone to microstructure effects. We introduce a new concept of business intensity, the sampler of which is named Optimizable Multiresolution Quadratic Variation Filter. Our filter uses multiresolution analysis techniques to decompose the data into different scales and quadratic variation to build up the new business time scale. Our empirical findings show that our filter is clearly less prone to microstructure effects than any other common sampling method.
We use the classified tick-by-tick data for Turkish Interbank FX market. The market is closed for nearly 14 hours of the day, so big jumps occur between closing and opening prices. We also propose a new smoothing algorithm to reduce the effects of those jumps.
|
6 |
Efficient estimation using the characteristic function : theory and applications with high frequency dataKotchoni, Rachidi 05 1900 (has links)
The attached file is created with Scientific Workplace Latex / Nous abordons deux sujets distincts dans cette thèse: l'estimation de la volatilité des prix d'actifs financiers à partir des données à haute fréquence, et l'estimation des paramétres d'un processus aléatoire à partir de sa fonction caractéristique.
Le chapitre 1 s'intéresse à l'estimation de la volatilité des prix d'actifs. Nous supposons que les données à haute fréquence disponibles sont entachées de bruit de microstructure. Les propriétés que l'on prête au bruit sont déterminantes dans le choix de l'estimateur de la volatilité. Dans ce chapitre, nous spécifions un nouveau modèle dynamique pour le bruit de microstructure qui intègre trois propriétés importantes: (i) le bruit peut être autocorrélé, (ii) le retard maximal au delà duquel l'autocorrélation est nulle peut être une fonction croissante de la fréquence journalière d'observations; (iii) le bruit peut avoir une composante correlée avec le rendement efficient. Cette dernière composante est alors dite endogène. Ce modèle se différencie de ceux existant en ceci qu'il implique que l'autocorrélation d'ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d'observation tend vers l'infini.
Nous utilisons le cadre semi-paramétrique ainsi défini pour dériver un nouvel estimateur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente sous la forme d'une combinaison linéaire optimale de deux estimateurs aux propriétés différentes, l'optimalité étant défini en termes de minimisation de la variance. Les simulations indiquent que l'estimateur shrinkage a une variance plus petite que le meilleur des deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres du modèle de microstructure. Nous clôturons ce chapitre par une application empirique basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu'il est pertinent de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus d'estimation de la volatilité.
Les chapitres 2, 3 et 4 s'inscrivent dans la littérature économétrique qui traite de la méthode des moments généralisés. En effet, on rencontre en finance des modèles dont la fonction de vraisemblance n'est pas connue. On peut citer en guise d'exemple la loi stable ainsi que les modèles de diffusion observés en temps discrets. Les méthodes d'inférence basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement, on spécifie une condition de moment basée sur la différence entre la fonction caractéristique (conditionnelle) théorique et sa contrepartie empirique. Le défit ici est d'exploiter au mieux le continuum de conditions de moment ainsi spécifié pour atteindre la même efficacité que le maximum de vraisemblance dans les inférences.
Ce défit a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure CGMM (continuum GMM). La fonction objectif que ces auteurs proposent est une forme quadratique hilbertienne qui fait intervenir l'opérateur inverse de covariance associé au continuum de condition de moments. Cet opérateur inverse est régularisé à la Tikhonov pour en assurer l'existence globale et la continuité. Carrasco et Florens (2000) ont montré que l'estimateur obtenu en minimisant cette forme quadratique est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance si le paramètre de régularisation (α) tend vers zéro lorsque la taille de l'échatillon tend vers l'infini. La nature de la fonction objectif du CGMM soulève deux questions importantes. La première est celle de la calibration de α en pratique, et la seconde est liée à la présence d'intégrales multiples dans l'expression de la fonction objectif. C'est à ces deux problématiques qu'essayent de répondent les trois derniers chapitres de la présente thèse.
Dans le chapitre 2, nous proposons une méthode de calibration de α basée sur la minimisation de l'erreur quadratique moyenne (EQM) de l'estimateur. Nous suivons une approche similaire à celle de Newey et Smith (2004) pour calculer un développement d'ordre supérieur de l'EQM de l'estimateur CGMM de sorte à pouvoir examiner sa dépendance en α en échantillon fini. Nous proposons ensuite deux méthodes pour choisir α en pratique. La première se base sur le développement de l'EQM, et la seconde se base sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre un estimateur convergent de α optimal. Nos simulations confirment la pertinence de la calibration de α en pratique.
Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles univariés ou bivariés. Nous commençons par passer en revue les propriétés de convergence et de normalité asymptotique de l'estimateur CGMM. Nous proposons ensuite des recettes numériques pour l'implémentation. Enfin, nous conduisons des simulations Monte Carlo basée sur la loi stable. Ces simulations démontrent que le CGMM est une méthode fiable d'inférence. En guise d'application empirique, nous estimons par CGMM un modèle de variance autorégressif Gamma. Les résultats d'estimation confirment un résultat bien connu en finance: le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur la volatilité.
Lorsqu'on implémente le CGMM, une difficulté majeure réside dans l'évaluation numérique itérative des intégrales multiples présentes dans la fonction objectif. Les méthodes de quadrature sont en principe parmi les plus précises que l'on puisse utiliser dans le présent contexte. Malheureusement, le nombre de points de quadrature augmente exponentiellement en fonction de la dimensionalité (d) des intégrales. L'utilisation du CGMM devient pratiquement impossible dans les modèles multivariés et non markoviens où d≥3. Dans le chapitre 4, nous proposons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle" qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de ℝ^{d}. Chaque échantillon ainsi généré est utilisé pour produire un estimateur du paramètre d'intérêt. L'estimateur final que nous proposons est une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous proposons une étude par simulation et une application empirique basées sur des modèles autorégressifs Gamma.
Dans l'ensemble, nous faisons une utilisation intensive du bootstrap, une technique selon laquelle les propriétés statistiques d'une distribution inconnue peuvent être estimées à partir d'un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du bootstrap. / In estimating the integrated volatility of financial assets using noisy high frequency data, the time series properties assumed for the microstructure noise determines the proper choice of the volatility estimator. In the first chapter of the current thesis, we propose a new model for the microstructure noise with three important features. First of all, our model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to increase with the sampling frequency. And thirdly, the noise may include an endogenous part, that is, a piece that is correlated with the latent returns. The main difference between this microstructure model and existing ones is that it implies a first order autocorrelation that converges to 1 as the sampling frequency goes to infinity.
We use this semi-parametric model to derive a new shrinkage estimator for the integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-off by combining a consistent estimators with an inconsistent one. Simulation results show that the shrinkage estimator behaves better than the best of the two combined ones. We also propose some estimators for the parameters of the noise model. An empirical study based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for possible time dependence in the noise process.
Chapters 2, 3 and 4 pertain to the generalized method of moments based on the characteristic function. In fact, the likelihood functions of many financial econometrics models are not known in close form. For example, this is the case for the stable distribution and a discretely observed continuous time model. In these cases, one may estimate the parameter of interest by specifying a moment condition based on the difference between the theoretical (conditional) characteristic function and its empirical counterpart. The challenge is then to exploit the whole continuum of moment conditions hence defined to achieve the maximum likelihood efficiency.
This problem has been solved in Carrasco and Florens (2000) who propose the CGMM procedure. The objective function of the CGMM is a quadrqtic form on the Hilbert space defined by the moment function. That objective function depends on a Tikhonov-type regularized inverse of the covariance operator associated with the moment function. Carrasco and Florens (2000) have shown that the estimator obtained by minimizing the proposed objective function is asymptotically as efficient as the maximum likelihood estimator provided that the regularization parameter (α) converges to zero as the sample size goes to infinity. However, the nature of this objective function raises two important questions. First of all, how do we select α in practice? And secondly, how do we implement the CGMM when the multiplicity (d) of the integrals embedded in the objective-function d is large. These questions are tackled in the last three chapters of the thesis.
In Chapter 2, we propose to choose α by minimizing the approximate mean square error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the MSE on α. We provide two data-driven methods for selecting the regularization parameter in practice. The first one relies on the higher-order expansion of the MSE whereas the second one uses only simulations. We show that our simulation technique delivers a consistent estimator of α. Our Monte Carlo simulations confirm the importance of the optimal selection of α.
The goal of Chapter 3 is to illustrate how to efficiently implement the CGMM for d≤2. To start with, we review the consistency and asymptotic normality properties of the CGMM estimator. Next we suggest some numerical recipes for its implementation. Finally, we carry out a simulation study with the stable distribution that confirms the accuracy of the CGMM as an inference method. An empirical application based on the autoregressive variance Gamma model led to a well-known conclusion: investors require a positive premium for bearing the expected risk while a negative premium is attached to the unexpected risk.
In implementing the characteristic function based CGMM, a major difficulty lies in the evaluation of the multiple integrals embedded in the objective function. Numerical quadratures are among the most accurate methods that can be used in the present context. Unfortunately, the number of quadrature points grows exponentially with d. When the data generating process is Markov or dependent, the accurate implementation of the CGMM becomes roughly unfeasible when d≥3. In Chapter 4, we propose a strategy that consists in creating univariate samples by taking a linear combination of the elements of the original vector process. The weights of the linear combinations are drawn from a normalized set of ℝ^{d}. Each univariate index generated in this way is called a frequency domain bootstrap sample that can be used to compute an estimator of the parameter of interest. Finally, all the possible estimators obtained in this fashion can be aggregated to obtain the final estimator. The optimal aggregation rule is discussed in the paper. The overall method is illustrated by a simulation study and an empirical application based on autoregressive Gamma models.
This thesis makes an extensive use of the bootstrap, a technique according to which the statistical properties of an unknown distribution can be estimated from an estimate of that distribution. It is thus possible to improve our simulations and empirical results by using the state-of-the-art refinements of the bootstrap methodology.
|
7 |
Bipower-variation bei Finanzmarktdaten mit unregelmaessigen Beobachtungsabstaenden / Bipower-variation for irregulary financial dataJanicke, Nico 07 January 2008 (has links)
No description available.
|
8 |
Efficient estimation using the characteristic function : theory and applications with high frequency dataKotchoni, Rachidi 05 1900 (has links)
Nous abordons deux sujets distincts dans cette thèse: l'estimation de la volatilité des prix d'actifs financiers à partir des données à haute fréquence, et l'estimation des paramétres d'un processus aléatoire à partir de sa fonction caractéristique.
Le chapitre 1 s'intéresse à l'estimation de la volatilité des prix d'actifs. Nous supposons que les données à haute fréquence disponibles sont entachées de bruit de microstructure. Les propriétés que l'on prête au bruit sont déterminantes dans le choix de l'estimateur de la volatilité. Dans ce chapitre, nous spécifions un nouveau modèle dynamique pour le bruit de microstructure qui intègre trois propriétés importantes: (i) le bruit peut être autocorrélé, (ii) le retard maximal au delà duquel l'autocorrélation est nulle peut être une fonction croissante de la fréquence journalière d'observations; (iii) le bruit peut avoir une composante correlée avec le rendement efficient. Cette dernière composante est alors dite endogène. Ce modèle se différencie de ceux existant en ceci qu'il implique que l'autocorrélation d'ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d'observation tend vers l'infini.
Nous utilisons le cadre semi-paramétrique ainsi défini pour dériver un nouvel estimateur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente sous la forme d'une combinaison linéaire optimale de deux estimateurs aux propriétés différentes, l'optimalité étant défini en termes de minimisation de la variance. Les simulations indiquent que l'estimateur shrinkage a une variance plus petite que le meilleur des deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres du modèle de microstructure. Nous clôturons ce chapitre par une application empirique basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu'il est pertinent de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus d'estimation de la volatilité.
Les chapitres 2, 3 et 4 s'inscrivent dans la littérature économétrique qui traite de la méthode des moments généralisés. En effet, on rencontre en finance des modèles dont la fonction de vraisemblance n'est pas connue. On peut citer en guise d'exemple la loi stable ainsi que les modèles de diffusion observés en temps discrets. Les méthodes d'inférence basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement, on spécifie une condition de moment basée sur la différence entre la fonction caractéristique (conditionnelle) théorique et sa contrepartie empirique. Le défit ici est d'exploiter au mieux le continuum de conditions de moment ainsi spécifié pour atteindre la même efficacité que le maximum de vraisemblance dans les inférences.
Ce défit a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure CGMM (continuum GMM). La fonction objectif que ces auteurs proposent est une forme quadratique hilbertienne qui fait intervenir l'opérateur inverse de covariance associé au continuum de condition de moments. Cet opérateur inverse est régularisé à la Tikhonov pour en assurer l'existence globale et la continuité. Carrasco et Florens (2000) ont montré que l'estimateur obtenu en minimisant cette forme quadratique est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance si le paramètre de régularisation (α) tend vers zéro lorsque la taille de l'échatillon tend vers l'infini. La nature de la fonction objectif du CGMM soulève deux questions importantes. La première est celle de la calibration de α en pratique, et la seconde est liée à la présence d'intégrales multiples dans l'expression de la fonction objectif. C'est à ces deux problématiques qu'essayent de répondent les trois derniers chapitres de la présente thèse.
Dans le chapitre 2, nous proposons une méthode de calibration de α basée sur la minimisation de l'erreur quadratique moyenne (EQM) de l'estimateur. Nous suivons une approche similaire à celle de Newey et Smith (2004) pour calculer un développement d'ordre supérieur de l'EQM de l'estimateur CGMM de sorte à pouvoir examiner sa dépendance en α en échantillon fini. Nous proposons ensuite deux méthodes pour choisir α en pratique. La première se base sur le développement de l'EQM, et la seconde se base sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre un estimateur convergent de α optimal. Nos simulations confirment la pertinence de la calibration de α en pratique.
Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles univariés ou bivariés. Nous commençons par passer en revue les propriétés de convergence et de normalité asymptotique de l'estimateur CGMM. Nous proposons ensuite des recettes numériques pour l'implémentation. Enfin, nous conduisons des simulations Monte Carlo basée sur la loi stable. Ces simulations démontrent que le CGMM est une méthode fiable d'inférence. En guise d'application empirique, nous estimons par CGMM un modèle de variance autorégressif Gamma. Les résultats d'estimation confirment un résultat bien connu en finance: le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur la volatilité.
Lorsqu'on implémente le CGMM, une difficulté majeure réside dans l'évaluation numérique itérative des intégrales multiples présentes dans la fonction objectif. Les méthodes de quadrature sont en principe parmi les plus précises que l'on puisse utiliser dans le présent contexte. Malheureusement, le nombre de points de quadrature augmente exponentiellement en fonction de la dimensionalité (d) des intégrales. L'utilisation du CGMM devient pratiquement impossible dans les modèles multivariés et non markoviens où d≥3. Dans le chapitre 4, nous proposons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle" qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de ℝ^{d}. Chaque échantillon ainsi généré est utilisé pour produire un estimateur du paramètre d'intérêt. L'estimateur final que nous proposons est une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous proposons une étude par simulation et une application empirique basées sur des modèles autorégressifs Gamma.
Dans l'ensemble, nous faisons une utilisation intensive du bootstrap, une technique selon laquelle les propriétés statistiques d'une distribution inconnue peuvent être estimées à partir d'un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du bootstrap. / In estimating the integrated volatility of financial assets using noisy high frequency data, the time series properties assumed for the microstructure noise determines the proper choice of the volatility estimator. In the first chapter of the current thesis, we propose a new model for the microstructure noise with three important features. First of all, our model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to increase with the sampling frequency. And thirdly, the noise may include an endogenous part, that is, a piece that is correlated with the latent returns. The main difference between this microstructure model and existing ones is that it implies a first order autocorrelation that converges to 1 as the sampling frequency goes to infinity.
We use this semi-parametric model to derive a new shrinkage estimator for the integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-off by combining a consistent estimators with an inconsistent one. Simulation results show that the shrinkage estimator behaves better than the best of the two combined ones. We also propose some estimators for the parameters of the noise model. An empirical study based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for possible time dependence in the noise process.
Chapters 2, 3 and 4 pertain to the generalized method of moments based on the characteristic function. In fact, the likelihood functions of many financial econometrics models are not known in close form. For example, this is the case for the stable distribution and a discretely observed continuous time model. In these cases, one may estimate the parameter of interest by specifying a moment condition based on the difference between the theoretical (conditional) characteristic function and its empirical counterpart. The challenge is then to exploit the whole continuum of moment conditions hence defined to achieve the maximum likelihood efficiency.
This problem has been solved in Carrasco and Florens (2000) who propose the CGMM procedure. The objective function of the CGMM is a quadrqtic form on the Hilbert space defined by the moment function. That objective function depends on a Tikhonov-type regularized inverse of the covariance operator associated with the moment function. Carrasco and Florens (2000) have shown that the estimator obtained by minimizing the proposed objective function is asymptotically as efficient as the maximum likelihood estimator provided that the regularization parameter (α) converges to zero as the sample size goes to infinity. However, the nature of this objective function raises two important questions. First of all, how do we select α in practice? And secondly, how do we implement the CGMM when the multiplicity (d) of the integrals embedded in the objective-function d is large. These questions are tackled in the last three chapters of the thesis.
In Chapter 2, we propose to choose α by minimizing the approximate mean square error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the MSE on α. We provide two data-driven methods for selecting the regularization parameter in practice. The first one relies on the higher-order expansion of the MSE whereas the second one uses only simulations. We show that our simulation technique delivers a consistent estimator of α. Our Monte Carlo simulations confirm the importance of the optimal selection of α.
The goal of Chapter 3 is to illustrate how to efficiently implement the CGMM for d≤2. To start with, we review the consistency and asymptotic normality properties of the CGMM estimator. Next we suggest some numerical recipes for its implementation. Finally, we carry out a simulation study with the stable distribution that confirms the accuracy of the CGMM as an inference method. An empirical application based on the autoregressive variance Gamma model led to a well-known conclusion: investors require a positive premium for bearing the expected risk while a negative premium is attached to the unexpected risk.
In implementing the characteristic function based CGMM, a major difficulty lies in the evaluation of the multiple integrals embedded in the objective function. Numerical quadratures are among the most accurate methods that can be used in the present context. Unfortunately, the number of quadrature points grows exponentially with d. When the data generating process is Markov or dependent, the accurate implementation of the CGMM becomes roughly unfeasible when d≥3. In Chapter 4, we propose a strategy that consists in creating univariate samples by taking a linear combination of the elements of the original vector process. The weights of the linear combinations are drawn from a normalized set of ℝ^{d}. Each univariate index generated in this way is called a frequency domain bootstrap sample that can be used to compute an estimator of the parameter of interest. Finally, all the possible estimators obtained in this fashion can be aggregated to obtain the final estimator. The optimal aggregation rule is discussed in the paper. The overall method is illustrated by a simulation study and an empirical application based on autoregressive Gamma models.
This thesis makes an extensive use of the bootstrap, a technique according to which the statistical properties of an unknown distribution can be estimated from an estimate of that distribution. It is thus possible to improve our simulations and empirical results by using the state-of-the-art refinements of the bootstrap methodology. / The attached file is created with Scientific Workplace Latex
|
Page generated in 0.1366 seconds