• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the Estimation of Integrated Volatility for High Frequency Data

Lin, Liang-ching 26 July 2007 (has links)
Estimating the integrated volatility of high frequency realized prices is an important issue in microstructure literature. Bandi and Russell (2006) derived the optimal-sampling frequency, and Zhang et al. (2005) proposed a "two-scales estimator" to solve the problem. In this study, we propose a new estimator based on a signal to noise ratio statistic with convergence rate of Op (n^(−1/ 4) ). The method is applicable to both constant and stochastic volatility models and modi¡Âes the Op (n^(−1/ 6) ) convergence rate of Zhang et al. (2005). The proposed estimator is shown to be asymptotic e¡Ócient as the maximum likelihood estimate for the constant volatility case. Furthermore, unbiased estimators of the two elements, the variance of the microstructure noise and the fourth moment of the realized log returns, are also proposed to facilitate the estimation of integrated volatility. The asymptotic prop- erties and e®ectiveness of the proposed estimators are investigated both theoretically and via simulation study.
2

Mesure et Prévision de la Volatilité pour les Actifs Liquides

Chaker, Selma 04 1900 (has links)
Le prix efficient est latent, il est contaminé par les frictions microstructurelles ou bruit. On explore la mesure et la prévision de la volatilité fondamentale en utilisant les données à haute fréquence. Dans le premier papier, en maintenant le cadre standard du modèle additif du bruit et le prix efficient, on montre qu’en utilisant le volume de transaction, les volumes d’achat et de vente, l’indicateur de la direction de transaction et la différence entre prix d’achat et prix de vente pour absorber le bruit, on améliore la précision des estimateurs de volatilité. Si le bruit n’est que partiellement absorbé, le bruit résiduel est plus proche d’un bruit blanc que le bruit original, ce qui diminue la misspécification des caractéristiques du bruit. Dans le deuxième papier, on part d’un fait empirique qu’on modélise par une forme linéaire de la variance du bruit microstructure en la volatilité fondamentale. Grâce à la représentation de la classe générale des modèles de volatilité stochastique, on explore la performance de prévision de différentes mesures de volatilité sous les hypothèses de notre modèle. Dans le troisième papier, on dérive de nouvelles mesures réalizées en utilisant les prix et les volumes d’achat et de vente. Comme alternative au modèle additif standard pour les prix contaminés avec le bruit microstructure, on fait des hypothèses sur la distribution du prix sans frictions qui est supposé borné par les prix de vente et d’achat. / The high frequency observed price series is contaminated with market microstructure frictions or noise. We explore the measurement and forecasting of the fundamental volatility through novel approaches to the frictions’ problem. In the first paper, while maintaining the standard framework of a noise-frictionless price additive model, we use the trading volume, quoted depths, trade direction indicator and bid-ask spread to get rid of the noise. The econometric model is a price impact linear regression. We show that incorporating the cited liquidity costs variables delivers more precise volatility estimators. If the noise is only partially absorbed, the remaining noise is closer to a white noise than the original one, which lessens misspecification of the noise characteristics. Our approach is also robust to a specific form of endogeneity under which the common robust to noise measures are inconsistent. In the second paper, we model the variance of the market microstructure noise that contaminates the frictionless price as an affine function of the fundamental volatility. Under our model, the noise is time-varying intradaily. Using the eigenfunction representation of the general stochastic volatility class of models, we quantify the forecasting performance of several volatility measures under our model assumptions. In the third paper, instead of assuming the standard additive model for the observed price series, we specify the conditional distribution of the frictionless price given the available information which includes quotes and volumes. We come up with new volatility measures by characterizing the conditional mean of the integrated variance.
3

Mesure et Prévision de la Volatilité pour les Actifs Liquides

Chaker, Selma 04 1900 (has links)
Le prix efficient est latent, il est contaminé par les frictions microstructurelles ou bruit. On explore la mesure et la prévision de la volatilité fondamentale en utilisant les données à haute fréquence. Dans le premier papier, en maintenant le cadre standard du modèle additif du bruit et le prix efficient, on montre qu’en utilisant le volume de transaction, les volumes d’achat et de vente, l’indicateur de la direction de transaction et la différence entre prix d’achat et prix de vente pour absorber le bruit, on améliore la précision des estimateurs de volatilité. Si le bruit n’est que partiellement absorbé, le bruit résiduel est plus proche d’un bruit blanc que le bruit original, ce qui diminue la misspécification des caractéristiques du bruit. Dans le deuxième papier, on part d’un fait empirique qu’on modélise par une forme linéaire de la variance du bruit microstructure en la volatilité fondamentale. Grâce à la représentation de la classe générale des modèles de volatilité stochastique, on explore la performance de prévision de différentes mesures de volatilité sous les hypothèses de notre modèle. Dans le troisième papier, on dérive de nouvelles mesures réalizées en utilisant les prix et les volumes d’achat et de vente. Comme alternative au modèle additif standard pour les prix contaminés avec le bruit microstructure, on fait des hypothèses sur la distribution du prix sans frictions qui est supposé borné par les prix de vente et d’achat. / The high frequency observed price series is contaminated with market microstructure frictions or noise. We explore the measurement and forecasting of the fundamental volatility through novel approaches to the frictions’ problem. In the first paper, while maintaining the standard framework of a noise-frictionless price additive model, we use the trading volume, quoted depths, trade direction indicator and bid-ask spread to get rid of the noise. The econometric model is a price impact linear regression. We show that incorporating the cited liquidity costs variables delivers more precise volatility estimators. If the noise is only partially absorbed, the remaining noise is closer to a white noise than the original one, which lessens misspecification of the noise characteristics. Our approach is also robust to a specific form of endogeneity under which the common robust to noise measures are inconsistent. In the second paper, we model the variance of the market microstructure noise that contaminates the frictionless price as an affine function of the fundamental volatility. Under our model, the noise is time-varying intradaily. Using the eigenfunction representation of the general stochastic volatility class of models, we quantify the forecasting performance of several volatility measures under our model assumptions. In the third paper, instead of assuming the standard additive model for the observed price series, we specify the conditional distribution of the frictionless price given the available information which includes quotes and volumes. We come up with new volatility measures by characterizing the conditional mean of the integrated variance.
4

Bootstrapping high frequency data

Hounyo, Koomla Ulrich 07 1900 (has links)
Nous développons dans cette thèse, des méthodes de bootstrap pour les données financières de hautes fréquences. Les deux premiers essais focalisent sur les méthodes de bootstrap appliquées à l’approche de "pré-moyennement" et robustes à la présence d’erreurs de microstructure. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. En se basant sur cette ap- proche d’estimation de la volatilité intégrée en présence d’erreurs de microstructure, nous développons plusieurs méthodes de bootstrap qui préservent la structure de dépendance et l’hétérogénéité dans la moyenne des données originelles. Le troisième essai développe une méthode de bootstrap sous l’hypothèse de Gaussianité locale des données financières de hautes fréquences. Le premier chapitre est intitulé: "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". Nous proposons dans ce chapitre, des méthodes de bootstrap robustes à la présence d’erreurs de microstructure. Particulièrement nous nous sommes focalisés sur la volatilité réalisée utilisant des rendements "pré-moyennés" proposés par Podolskij et Vetter (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à hautes fréquences consécutifs qui ne se chevauchent pas. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. Le non-chevauchement des blocs fait que les rendements "pré-moyennés" sont asymptotiquement indépendants, mais possiblement hétéroscédastiques. Ce qui motive l’application du wild bootstrap dans ce contexte. Nous montrons la validité théorique du bootstrap pour construire des intervalles de type percentile et percentile-t. Les simulations Monte Carlo montrent que le bootstrap peut améliorer les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques, pourvu que le choix de la variable externe soit fait de façon appropriée. Nous illustrons ces méthodes en utilisant des données financières réelles. Le deuxième chapitre est intitulé : "Bootstrapping pre-averaged realized volatility under market microstructure noise". Nous développons dans ce chapitre une méthode de bootstrap par bloc basée sur l’approche "pré-moyennement" de Jacod et al. (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à haute fréquences consécutifs qui se chevauchent. Le chevauchement des blocs induit une forte dépendance dans la structure des rendements "pré-moyennés". En effet les rendements "pré-moyennés" sont m-dépendant avec m qui croît à une vitesse plus faible que la taille d’échantillon n. Ceci motive l’application d’un bootstrap par bloc spécifique. Nous montrons que le bloc bootstrap suggéré par Bühlmann et Künsch (1995) n’est valide que lorsque la volatilité est constante. Ceci est dû à l’hétérogénéité dans la moyenne des rendements "pré-moyennés" au carré lorsque la volatilité est stochastique. Nous proposons donc une nouvelle procédure de bootstrap qui combine le wild bootstrap et le bootstrap par bloc, de telle sorte que la dépendance sérielle des rendements "pré-moyennés" est préservée à l’intérieur des blocs et la condition d’homogénéité nécessaire pour la validité du bootstrap est respectée. Sous des conditions de taille de bloc, nous montrons que cette méthode est convergente. Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques. Nous illustrons cette méthode en utilisant des données financières réelles. Le troisième chapitre est intitulé: "Bootstrapping realized covolatility measures under local Gaussianity assumption". Dans ce chapitre nous montrons, comment et dans quelle mesure on peut approximer les distributions des estimateurs de mesures de co-volatilité sous l’hypothèse de Gaussianité locale des rendements. En particulier nous proposons une nouvelle méthode de bootstrap sous ces hypothèses. Nous nous sommes focalisés sur la volatilité réalisée et sur le beta réalisé. Nous montrons que la nouvelle méthode de bootstrap appliquée au beta réalisé était capable de répliquer les cummulants au deuxième ordre, tandis qu’il procurait une amélioration au troisième degré lorsqu’elle est appliquée à la volatilité réalisée. Ces résultats améliorent donc les résultats existants dans cette littérature, notamment ceux de Gonçalves et Meddahi (2009) et de Dovonon, Gonçalves et Meddahi (2013). Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques et les résultats de bootstrap existants. Nous illustrons cette méthode en utilisant des données financières réelles. / We develop in this thesis bootstrap methods for high frequency financial data. The first two chapters focalise on bootstrap methods for the "pre-averaging" approach, which is robust to the presence of market microstructure effects. The main idea underlying this approach is that we can reduce the impact of the noise by pre-averaging high frequency returns that are possibly contaminated with market microstructure noise before applying a realized volatility-like statistic. Based on this approach, we develop several bootstrap methods, which preserve the dependence structure and the heterogeneity in the mean of the original data. The third chapter shows how and to what extent the local Gaussian- ity assumption can be explored to generate a bootstrap approximation for covolatility measures. The first chapter is entitled "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". The main contribution of this chapter is to propose bootstrap methods for realized volatility-like estimators defined on pre-averaged returns. In particular, we focus on the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009). This statistic can be written (up to a bias correction term) as the (scaled) sum of squared pre-averaged returns, where the pre-averaging is done over all possible non-overlapping blocks of consecutive observations. Pre-averaging reduces the influence of the noise and allows for realized volatility estimation on the pre-averaged returns. The non-overlapping nature of the pre-averaged returns implies that these are asymptotically independent, but possibly heteroskedastic. This motivates the application of the wild bootstrap in this context. We provide a proof of the first order asymptotic validity of this method for percentile and percentile-t intervals. Our Monte Carlo simulations show that the wild bootstrap can improve the finite sample properties of the existing first order asymptotic theory provided we choose the external random variable appropriately. The second chapter is entitled "Bootstrapping pre-averaged realized volatility under market microstructure noise ". In this chapter we propose a bootstrap method for inference on integrated volatility based on the pre-averaging approach of Jacod et al. (2009), where the pre-averaging is done over all possible overlapping blocks of consecutive observations. The overlapping nature of the pre-averaged returns implies that these are m-dependent with m growing slowly with the sample size n. This motivates the application of a blockwise bootstrap method. We show that the “blocks of blocks” bootstrap method suggested by Politis and Romano (1992) (and further studied by Bühlmann and Künsch (1995)) is valid only when volatility is constant. The failure of the blocks of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic. To preserve both the dependence and the heterogeneity of squared pre-averaged returns, we propose a novel procedure that combines the wild bootstrap with the blocks of blocks bootstrap. We provide a proof of the first order asymptotic validity of this method for percentile intervals. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves the finite sample properties of the existing first order asymptotic theory. The third chapter is entitled "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption". The financial econometric of high frequency data litera- ture often assumed a local constancy of volatility and the Gaussianity properties of high frequency returns in order to carry out inference. In this chapter, we show how and to what extent the local Gaussianity assumption can be explored to generate a bootstrap approximation. We show the first-order asymptotic validity of the new wild bootstrap method, which uses the conditional local normality properties of financial high frequency returns. In addition to that we use Edgeworth expansions and Monte Carlo simulations to compare the accuracy of the bootstrap with other existing approaches. It is shown that at second order, the new wild bootstrap matches the cumulants of realized betas-based t-statistics, whereas it provides a third-order asymptotic refinement for realized volatility. Monte Carlo simulations suggest that our new wild bootstrap methods improve upon the first-order asymptotic theory in finite samples and outperform the existing bootstrap methods for realized covolatility measures. We use empirical work to illustrate its uses in practice.
5

Estimating the quadratic covariation from asynchronous noisy high-frequency observations

Bibinger, Markus 30 August 2011 (has links)
Ein nichtparametrisches Schätzverfahren für die quadratische Kovariation von hochfrequent nicht-synchron beobachteter Itô-Prozessen mit einem additiven Rauschen wird entwickelt. Für eine artverwandte Folge von statistischen Experimenten wird die lokal asymptotische Normalität (LAN) im Sinne von Le Cam bewiesen. Mit dieser lassen sich optimale Konvergenzraten und Effizienzschranken für asymptotische Varianzen ableiten. Der vorgestellte Schätzer wird auf Grundlage von zwei modernen Verfahren, für die Anwendung bei nicht-synchronen Beobachtungen zum einen, und einem additiven Rauschen zum anderen, entwickelt. Der Hayashi-Yoshida Schätzer wird in einer neuen Darstellung eingeführt, welche einen Synchronisierungsalgorithmus mit einschließt, der für die kombinierte Methode ausgelegt werden kann. Es wird eine stabiles zentrales Grenzwerttheorem bewiesen, wobei spezieller Wert auf die Analyse des Einflusses der Nicht-Synchronität auf die asymptotische Varianz gelegt wird. Nach diesen Vorbereitungen wird das kombinierte Schätzverfahren für den allgemeinsten Fall nicht-synchroner verrauschter Beobachtungen vorgestellt. Dieses beruht auf Subsampling- und Multiskalenmethoden, die auf Mykland, Zhang und Aït-Sahalia zurück gehen. Es vereint positive Eigenschaften der beiden Ursprünge. Das zentrale Resultat dieser Arbeit ist der Beweis, dass der Schätzfehler stabil in Verteilung gegen eine gemischte Normalverteilung konvergiert. Für die asymptotische Varianz wird ein konsistenter Schätzer angegeben. In einer Anwendungsstudie wird eine praktische Implementierung des Schätzverfahrens, die die Wahl von abhängigen Parametern beinhaltet, getestet und auf ihre Eigenschaften im Falle endlicher Stichprobenumfänge untersucht. Neuen fortgeschrittenen Entwicklungen auf dem Forschungsfeld von Seite anderer Autoren wird Rechnung getragen durch Vergleiche und diesbezügliche Kommentare. / A nonparametric estimation approach for the quadratic covariation of Itô processes from high-frequency observations with an additive noise is developed. It is proved that a closely related sequence of statistical experiments is locally asymptotically normal (LAN) in the Le Cam sense. By virtue of this property optimal convergence rates and efficiency bounds for asymptotic variances of estimators can be concluded. The proposed nonparametric estimator is founded on a combination of two modern estimation methods devoted to an additive observation noise on the one hand and asynchronous observation schemes on the other hand. We reinvent this Hayashi-Yoshida estimator in a new illustration that can serve as a synchronization method which is possible to adapt for the combined approach. A stable central limit theorem is proved focusing especially on the impact of non-synchronicity on the asymptotic variance. With this preparations on hand, the generalized multiscale estimator for the noisy and asynchronous setting arises. This convenient method for the general model is based on subsampling and multiscale estimation techniques that have been established by Mykland, Zhang and Aït-Sahalia. It preserves valuable features of the synchronization methodology and the estimators to cope with noise perturbation. The central result of the thesis is that the estimation error of the generalized multiscale estimator converges with optimal rate stably in law to a centred mixed normal limiting distribution on fairly general regularity assumptions. For the asymptotic variance a consistent estimator based on time transformed histograms is given making the central limit theorem feasible. In an application study a practicable estimation algorithm including a choice of tuning parameters is tested for its features and finite sample size behaviour. We take account of recent advances on the research field by other authors in comparisons and notes.
6

Nonparametric Methods in Spot Volatility Estimation / Nichtparametrische Methoden für das Schätzen der Spot-Volatilität

Schmidt-Hieber, Anselm Johannes 26 October 2010 (has links)
No description available.
7

Efficient estimation using the characteristic function : theory and applications with high frequency data

Kotchoni, Rachidi 05 1900 (has links)
The attached file is created with Scientific Workplace Latex / Nous abordons deux sujets distincts dans cette thèse: l'estimation de la volatilité des prix d'actifs financiers à partir des données à haute fréquence, et l'estimation des paramétres d'un processus aléatoire à partir de sa fonction caractéristique. Le chapitre 1 s'intéresse à l'estimation de la volatilité des prix d'actifs. Nous supposons que les données à haute fréquence disponibles sont entachées de bruit de microstructure. Les propriétés que l'on prête au bruit sont déterminantes dans le choix de l'estimateur de la volatilité. Dans ce chapitre, nous spécifions un nouveau modèle dynamique pour le bruit de microstructure qui intègre trois propriétés importantes: (i) le bruit peut être autocorrélé, (ii) le retard maximal au delà duquel l'autocorrélation est nulle peut être une fonction croissante de la fréquence journalière d'observations; (iii) le bruit peut avoir une composante correlée avec le rendement efficient. Cette dernière composante est alors dite endogène. Ce modèle se différencie de ceux existant en ceci qu'il implique que l'autocorrélation d'ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d'observation tend vers l'infini. Nous utilisons le cadre semi-paramétrique ainsi défini pour dériver un nouvel estimateur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente sous la forme d'une combinaison linéaire optimale de deux estimateurs aux propriétés différentes, l'optimalité étant défini en termes de minimisation de la variance. Les simulations indiquent que l'estimateur shrinkage a une variance plus petite que le meilleur des deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres du modèle de microstructure. Nous clôturons ce chapitre par une application empirique basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu'il est pertinent de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus d'estimation de la volatilité. Les chapitres 2, 3 et 4 s'inscrivent dans la littérature économétrique qui traite de la méthode des moments généralisés. En effet, on rencontre en finance des modèles dont la fonction de vraisemblance n'est pas connue. On peut citer en guise d'exemple la loi stable ainsi que les modèles de diffusion observés en temps discrets. Les méthodes d'inférence basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement, on spécifie une condition de moment basée sur la différence entre la fonction caractéristique (conditionnelle) théorique et sa contrepartie empirique. Le défit ici est d'exploiter au mieux le continuum de conditions de moment ainsi spécifié pour atteindre la même efficacité que le maximum de vraisemblance dans les inférences. Ce défit a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure CGMM (continuum GMM). La fonction objectif que ces auteurs proposent est une forme quadratique hilbertienne qui fait intervenir l'opérateur inverse de covariance associé au continuum de condition de moments. Cet opérateur inverse est régularisé à la Tikhonov pour en assurer l'existence globale et la continuité. Carrasco et Florens (2000) ont montré que l'estimateur obtenu en minimisant cette forme quadratique est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance si le paramètre de régularisation (α) tend vers zéro lorsque la taille de l'échatillon tend vers l'infini. La nature de la fonction objectif du CGMM soulève deux questions importantes. La première est celle de la calibration de α en pratique, et la seconde est liée à la présence d'intégrales multiples dans l'expression de la fonction objectif. C'est à ces deux problématiques qu'essayent de répondent les trois derniers chapitres de la présente thèse. Dans le chapitre 2, nous proposons une méthode de calibration de α basée sur la minimisation de l'erreur quadratique moyenne (EQM) de l'estimateur. Nous suivons une approche similaire à celle de Newey et Smith (2004) pour calculer un développement d'ordre supérieur de l'EQM de l'estimateur CGMM de sorte à pouvoir examiner sa dépendance en α en échantillon fini. Nous proposons ensuite deux méthodes pour choisir α en pratique. La première se base sur le développement de l'EQM, et la seconde se base sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre un estimateur convergent de α optimal. Nos simulations confirment la pertinence de la calibration de α en pratique. Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles univariés ou bivariés. Nous commençons par passer en revue les propriétés de convergence et de normalité asymptotique de l'estimateur CGMM. Nous proposons ensuite des recettes numériques pour l'implémentation. Enfin, nous conduisons des simulations Monte Carlo basée sur la loi stable. Ces simulations démontrent que le CGMM est une méthode fiable d'inférence. En guise d'application empirique, nous estimons par CGMM un modèle de variance autorégressif Gamma. Les résultats d'estimation confirment un résultat bien connu en finance: le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur la volatilité. Lorsqu'on implémente le CGMM, une difficulté majeure réside dans l'évaluation numérique itérative des intégrales multiples présentes dans la fonction objectif. Les méthodes de quadrature sont en principe parmi les plus précises que l'on puisse utiliser dans le présent contexte. Malheureusement, le nombre de points de quadrature augmente exponentiellement en fonction de la dimensionalité (d) des intégrales. L'utilisation du CGMM devient pratiquement impossible dans les modèles multivariés et non markoviens où d≥3. Dans le chapitre 4, nous proposons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle" qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de ℝ^{d}. Chaque échantillon ainsi généré est utilisé pour produire un estimateur du paramètre d'intérêt. L'estimateur final que nous proposons est une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous proposons une étude par simulation et une application empirique basées sur des modèles autorégressifs Gamma. Dans l'ensemble, nous faisons une utilisation intensive du bootstrap, une technique selon laquelle les propriétés statistiques d'une distribution inconnue peuvent être estimées à partir d'un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du bootstrap. / In estimating the integrated volatility of financial assets using noisy high frequency data, the time series properties assumed for the microstructure noise determines the proper choice of the volatility estimator. In the first chapter of the current thesis, we propose a new model for the microstructure noise with three important features. First of all, our model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to increase with the sampling frequency. And thirdly, the noise may include an endogenous part, that is, a piece that is correlated with the latent returns. The main difference between this microstructure model and existing ones is that it implies a first order autocorrelation that converges to 1 as the sampling frequency goes to infinity. We use this semi-parametric model to derive a new shrinkage estimator for the integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-off by combining a consistent estimators with an inconsistent one. Simulation results show that the shrinkage estimator behaves better than the best of the two combined ones. We also propose some estimators for the parameters of the noise model. An empirical study based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for possible time dependence in the noise process. Chapters 2, 3 and 4 pertain to the generalized method of moments based on the characteristic function. In fact, the likelihood functions of many financial econometrics models are not known in close form. For example, this is the case for the stable distribution and a discretely observed continuous time model. In these cases, one may estimate the parameter of interest by specifying a moment condition based on the difference between the theoretical (conditional) characteristic function and its empirical counterpart. The challenge is then to exploit the whole continuum of moment conditions hence defined to achieve the maximum likelihood efficiency. This problem has been solved in Carrasco and Florens (2000) who propose the CGMM procedure. The objective function of the CGMM is a quadrqtic form on the Hilbert space defined by the moment function. That objective function depends on a Tikhonov-type regularized inverse of the covariance operator associated with the moment function. Carrasco and Florens (2000) have shown that the estimator obtained by minimizing the proposed objective function is asymptotically as efficient as the maximum likelihood estimator provided that the regularization parameter (α) converges to zero as the sample size goes to infinity. However, the nature of this objective function raises two important questions. First of all, how do we select α in practice? And secondly, how do we implement the CGMM when the multiplicity (d) of the integrals embedded in the objective-function d is large. These questions are tackled in the last three chapters of the thesis. In Chapter 2, we propose to choose α by minimizing the approximate mean square error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the MSE on α. We provide two data-driven methods for selecting the regularization parameter in practice. The first one relies on the higher-order expansion of the MSE whereas the second one uses only simulations. We show that our simulation technique delivers a consistent estimator of α. Our Monte Carlo simulations confirm the importance of the optimal selection of α. The goal of Chapter 3 is to illustrate how to efficiently implement the CGMM for d≤2. To start with, we review the consistency and asymptotic normality properties of the CGMM estimator. Next we suggest some numerical recipes for its implementation. Finally, we carry out a simulation study with the stable distribution that confirms the accuracy of the CGMM as an inference method. An empirical application based on the autoregressive variance Gamma model led to a well-known conclusion: investors require a positive premium for bearing the expected risk while a negative premium is attached to the unexpected risk. In implementing the characteristic function based CGMM, a major difficulty lies in the evaluation of the multiple integrals embedded in the objective function. Numerical quadratures are among the most accurate methods that can be used in the present context. Unfortunately, the number of quadrature points grows exponentially with d. When the data generating process is Markov or dependent, the accurate implementation of the CGMM becomes roughly unfeasible when d≥3. In Chapter 4, we propose a strategy that consists in creating univariate samples by taking a linear combination of the elements of the original vector process. The weights of the linear combinations are drawn from a normalized set of ℝ^{d}. Each univariate index generated in this way is called a frequency domain bootstrap sample that can be used to compute an estimator of the parameter of interest. Finally, all the possible estimators obtained in this fashion can be aggregated to obtain the final estimator. The optimal aggregation rule is discussed in the paper. The overall method is illustrated by a simulation study and an empirical application based on autoregressive Gamma models. This thesis makes an extensive use of the bootstrap, a technique according to which the statistical properties of an unknown distribution can be estimated from an estimate of that distribution. It is thus possible to improve our simulations and empirical results by using the state-of-the-art refinements of the bootstrap methodology.
8

Analyse du processus de diffusion des informations sur les marchés financiers : anticipation, publication et impact / Heterogeneity in Macroeconomic News Expectations : a disaggregate level analysis

El Ouadghiri, Imane 01 October 2015 (has links)
Les marchés financiers sont sujets quotidiennement à la diffusion de statistiques économiques ainsi que leurs prévisions par des institutions publiques et privées. Ces annonces sont prévues ou non prévues. Les annonces prévues sont organisées selon un calendrier connu à l’avance par tous les opérateurs. Ces annonces telles que les statistiques d'activité, d’exportation ou de sentiments, sont publiées une fois par mois par des agences spécialisées telles que Bloomberg. La diffusion d’une statistique économique ou financière est toujours précédée par la publication de sa prévision calculée comme la médiane de toutes les prévisions individuelles fournies par les agents. Cette médiane est un proxy de la vision commune des opérateurs et aide à la construction d'une représentation collective de l'environnement économique. Le premier chapitre de ma thèse a pour objectif d'analyser l'hétérogénéité dans la prévision des annonces macroéconomiques est testée grâce à des données mensuelles de prévisions issues d'enquêtes conduites par Bloomberg, sur une série d'indicateurs macroéconomiques. S’ensuit alors une deuxième problématique. Quels sont aux yeux des investisseurs, les critères qui permettent de considérer qu’une annonce est plus importante qu’une autre ? L’analyse du processus par lequel une information est incorporée dans les cours, nous a éclairés sur l’existence d’une forte rotation dans les statistiques considérées comme importantes (Market Mover indicators). Le deuxième chapitre tente donc de répondre à cette problématique. Dans un dernier chapitre je m’interroge sur la dynamique des prix post-publications d’annonces macroéconomiques et financières. Des connections sont réalisées entre les Jumps sur les cours des actifs et les annonces macroéconomiques, financières mais aussi imprévues. / Financial markets are subjected daily to the diffusion of economic indicators and their forecasts by public institutions and even private ones. These annoncements can be scheduled or unscheduled. The scheduled announcements are organized according to a specific calendar and known in advance by all operators. These news such as activity indicators, credit, export or sentiments’ surveys, are published monthly or quarterly by specialized agencies to all operators in real time. Our thesis contributes to diferent literatures and aims to thoroughly analyze the three phases of the diffusion process of new information on financial markets : anticipation of the announcement before its publication, interest that arouse its publication and impact of its publication on market dynamics. The aim of the first chapter is to investigate heterogeneity in macroeconomic news forecasts using disaggregate data of monthly expectation surveys conducted by Bloomberg on macroeconomic indicators from January 1999 to February 2013. The second chapter examines the impact of surprises associated with monthly macroeconomic news releases on Treasury-bond returns, by paying particular attention to the moment at which the information is published in the month. In the third chapter we examine the intraday effects of surprises from scheduled and unscheduled announcements on six major exchange rate returns (jumps) using an extension of the standard Tobit model with heteroskedastic and asymmetric errors.
9

Efficient estimation using the characteristic function : theory and applications with high frequency data

Kotchoni, Rachidi 05 1900 (has links)
Nous abordons deux sujets distincts dans cette thèse: l'estimation de la volatilité des prix d'actifs financiers à partir des données à haute fréquence, et l'estimation des paramétres d'un processus aléatoire à partir de sa fonction caractéristique. Le chapitre 1 s'intéresse à l'estimation de la volatilité des prix d'actifs. Nous supposons que les données à haute fréquence disponibles sont entachées de bruit de microstructure. Les propriétés que l'on prête au bruit sont déterminantes dans le choix de l'estimateur de la volatilité. Dans ce chapitre, nous spécifions un nouveau modèle dynamique pour le bruit de microstructure qui intègre trois propriétés importantes: (i) le bruit peut être autocorrélé, (ii) le retard maximal au delà duquel l'autocorrélation est nulle peut être une fonction croissante de la fréquence journalière d'observations; (iii) le bruit peut avoir une composante correlée avec le rendement efficient. Cette dernière composante est alors dite endogène. Ce modèle se différencie de ceux existant en ceci qu'il implique que l'autocorrélation d'ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d'observation tend vers l'infini. Nous utilisons le cadre semi-paramétrique ainsi défini pour dériver un nouvel estimateur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente sous la forme d'une combinaison linéaire optimale de deux estimateurs aux propriétés différentes, l'optimalité étant défini en termes de minimisation de la variance. Les simulations indiquent que l'estimateur shrinkage a une variance plus petite que le meilleur des deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres du modèle de microstructure. Nous clôturons ce chapitre par une application empirique basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu'il est pertinent de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus d'estimation de la volatilité. Les chapitres 2, 3 et 4 s'inscrivent dans la littérature économétrique qui traite de la méthode des moments généralisés. En effet, on rencontre en finance des modèles dont la fonction de vraisemblance n'est pas connue. On peut citer en guise d'exemple la loi stable ainsi que les modèles de diffusion observés en temps discrets. Les méthodes d'inférence basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement, on spécifie une condition de moment basée sur la différence entre la fonction caractéristique (conditionnelle) théorique et sa contrepartie empirique. Le défit ici est d'exploiter au mieux le continuum de conditions de moment ainsi spécifié pour atteindre la même efficacité que le maximum de vraisemblance dans les inférences. Ce défit a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure CGMM (continuum GMM). La fonction objectif que ces auteurs proposent est une forme quadratique hilbertienne qui fait intervenir l'opérateur inverse de covariance associé au continuum de condition de moments. Cet opérateur inverse est régularisé à la Tikhonov pour en assurer l'existence globale et la continuité. Carrasco et Florens (2000) ont montré que l'estimateur obtenu en minimisant cette forme quadratique est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance si le paramètre de régularisation (α) tend vers zéro lorsque la taille de l'échatillon tend vers l'infini. La nature de la fonction objectif du CGMM soulève deux questions importantes. La première est celle de la calibration de α en pratique, et la seconde est liée à la présence d'intégrales multiples dans l'expression de la fonction objectif. C'est à ces deux problématiques qu'essayent de répondent les trois derniers chapitres de la présente thèse. Dans le chapitre 2, nous proposons une méthode de calibration de α basée sur la minimisation de l'erreur quadratique moyenne (EQM) de l'estimateur. Nous suivons une approche similaire à celle de Newey et Smith (2004) pour calculer un développement d'ordre supérieur de l'EQM de l'estimateur CGMM de sorte à pouvoir examiner sa dépendance en α en échantillon fini. Nous proposons ensuite deux méthodes pour choisir α en pratique. La première se base sur le développement de l'EQM, et la seconde se base sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre un estimateur convergent de α optimal. Nos simulations confirment la pertinence de la calibration de α en pratique. Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles univariés ou bivariés. Nous commençons par passer en revue les propriétés de convergence et de normalité asymptotique de l'estimateur CGMM. Nous proposons ensuite des recettes numériques pour l'implémentation. Enfin, nous conduisons des simulations Monte Carlo basée sur la loi stable. Ces simulations démontrent que le CGMM est une méthode fiable d'inférence. En guise d'application empirique, nous estimons par CGMM un modèle de variance autorégressif Gamma. Les résultats d'estimation confirment un résultat bien connu en finance: le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur la volatilité. Lorsqu'on implémente le CGMM, une difficulté majeure réside dans l'évaluation numérique itérative des intégrales multiples présentes dans la fonction objectif. Les méthodes de quadrature sont en principe parmi les plus précises que l'on puisse utiliser dans le présent contexte. Malheureusement, le nombre de points de quadrature augmente exponentiellement en fonction de la dimensionalité (d) des intégrales. L'utilisation du CGMM devient pratiquement impossible dans les modèles multivariés et non markoviens où d≥3. Dans le chapitre 4, nous proposons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle" qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de ℝ^{d}. Chaque échantillon ainsi généré est utilisé pour produire un estimateur du paramètre d'intérêt. L'estimateur final que nous proposons est une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous proposons une étude par simulation et une application empirique basées sur des modèles autorégressifs Gamma. Dans l'ensemble, nous faisons une utilisation intensive du bootstrap, une technique selon laquelle les propriétés statistiques d'une distribution inconnue peuvent être estimées à partir d'un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du bootstrap. / In estimating the integrated volatility of financial assets using noisy high frequency data, the time series properties assumed for the microstructure noise determines the proper choice of the volatility estimator. In the first chapter of the current thesis, we propose a new model for the microstructure noise with three important features. First of all, our model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to increase with the sampling frequency. And thirdly, the noise may include an endogenous part, that is, a piece that is correlated with the latent returns. The main difference between this microstructure model and existing ones is that it implies a first order autocorrelation that converges to 1 as the sampling frequency goes to infinity. We use this semi-parametric model to derive a new shrinkage estimator for the integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-off by combining a consistent estimators with an inconsistent one. Simulation results show that the shrinkage estimator behaves better than the best of the two combined ones. We also propose some estimators for the parameters of the noise model. An empirical study based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for possible time dependence in the noise process. Chapters 2, 3 and 4 pertain to the generalized method of moments based on the characteristic function. In fact, the likelihood functions of many financial econometrics models are not known in close form. For example, this is the case for the stable distribution and a discretely observed continuous time model. In these cases, one may estimate the parameter of interest by specifying a moment condition based on the difference between the theoretical (conditional) characteristic function and its empirical counterpart. The challenge is then to exploit the whole continuum of moment conditions hence defined to achieve the maximum likelihood efficiency. This problem has been solved in Carrasco and Florens (2000) who propose the CGMM procedure. The objective function of the CGMM is a quadrqtic form on the Hilbert space defined by the moment function. That objective function depends on a Tikhonov-type regularized inverse of the covariance operator associated with the moment function. Carrasco and Florens (2000) have shown that the estimator obtained by minimizing the proposed objective function is asymptotically as efficient as the maximum likelihood estimator provided that the regularization parameter (α) converges to zero as the sample size goes to infinity. However, the nature of this objective function raises two important questions. First of all, how do we select α in practice? And secondly, how do we implement the CGMM when the multiplicity (d) of the integrals embedded in the objective-function d is large. These questions are tackled in the last three chapters of the thesis. In Chapter 2, we propose to choose α by minimizing the approximate mean square error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the MSE on α. We provide two data-driven methods for selecting the regularization parameter in practice. The first one relies on the higher-order expansion of the MSE whereas the second one uses only simulations. We show that our simulation technique delivers a consistent estimator of α. Our Monte Carlo simulations confirm the importance of the optimal selection of α. The goal of Chapter 3 is to illustrate how to efficiently implement the CGMM for d≤2. To start with, we review the consistency and asymptotic normality properties of the CGMM estimator. Next we suggest some numerical recipes for its implementation. Finally, we carry out a simulation study with the stable distribution that confirms the accuracy of the CGMM as an inference method. An empirical application based on the autoregressive variance Gamma model led to a well-known conclusion: investors require a positive premium for bearing the expected risk while a negative premium is attached to the unexpected risk. In implementing the characteristic function based CGMM, a major difficulty lies in the evaluation of the multiple integrals embedded in the objective function. Numerical quadratures are among the most accurate methods that can be used in the present context. Unfortunately, the number of quadrature points grows exponentially with d. When the data generating process is Markov or dependent, the accurate implementation of the CGMM becomes roughly unfeasible when d≥3. In Chapter 4, we propose a strategy that consists in creating univariate samples by taking a linear combination of the elements of the original vector process. The weights of the linear combinations are drawn from a normalized set of ℝ^{d}. Each univariate index generated in this way is called a frequency domain bootstrap sample that can be used to compute an estimator of the parameter of interest. Finally, all the possible estimators obtained in this fashion can be aggregated to obtain the final estimator. The optimal aggregation rule is discussed in the paper. The overall method is illustrated by a simulation study and an empirical application based on autoregressive Gamma models. This thesis makes an extensive use of the bootstrap, a technique according to which the statistical properties of an unknown distribution can be estimated from an estimate of that distribution. It is thus possible to improve our simulations and empirical results by using the state-of-the-art refinements of the bootstrap methodology. / The attached file is created with Scientific Workplace Latex

Page generated in 0.0924 seconds