Spelling suggestions: "subject:"volatilité réalisée"" "subject:"volatilité éalisée""
1 |
Common factors in stochastic volatility of asset returns and new developments of the generalized method of momentsDovonon, Prosper January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Mesure et Prévision de la Volatilité pour les Actifs LiquidesChaker, Selma 04 1900 (has links)
Le prix efficient est latent, il est contaminé par les frictions microstructurelles ou
bruit. On explore la mesure et la prévision de la volatilité fondamentale en utilisant les
données à haute fréquence.
Dans le premier papier, en maintenant le cadre standard du modèle additif du bruit et
le prix efficient, on montre qu’en utilisant le volume de transaction, les volumes d’achat
et de vente, l’indicateur de la direction de transaction et la différence entre prix d’achat et
prix de vente pour absorber le bruit, on améliore la précision des estimateurs de volatilité.
Si le bruit n’est que partiellement absorbé, le bruit résiduel est plus proche d’un bruit
blanc que le bruit original, ce qui diminue la misspécification des caractéristiques du
bruit.
Dans le deuxième papier, on part d’un fait empirique qu’on modélise par une forme
linéaire de la variance du bruit microstructure en la volatilité fondamentale. Grâce à la
représentation de la classe générale des modèles de volatilité stochastique, on explore
la performance de prévision de différentes mesures de volatilité sous les hypothèses de
notre modèle.
Dans le troisième papier, on dérive de nouvelles mesures réalizées en utilisant les prix
et les volumes d’achat et de vente. Comme alternative au modèle additif standard pour
les prix contaminés avec le bruit microstructure, on fait des hypothèses sur la distribution
du prix sans frictions qui est supposé borné par les prix de vente et d’achat. / The high frequency observed price series is contaminated with market microstructure
frictions or noise. We explore the measurement and forecasting of the fundamental
volatility through novel approaches to the frictions’ problem.
In the first paper, while maintaining the standard framework of a noise-frictionless price
additive model, we use the trading volume, quoted depths, trade direction indicator and
bid-ask spread to get rid of the noise. The econometric model is a price impact linear
regression. We show that incorporating the cited liquidity costs variables delivers more
precise volatility estimators. If the noise is only partially absorbed, the remaining noise
is closer to a white noise than the original one, which lessens misspecification of the
noise characteristics. Our approach is also robust to a specific form of endogeneity under
which the common robust to noise measures are inconsistent.
In the second paper, we model the variance of the market microstructure noise that contaminates
the frictionless price as an affine function of the fundamental volatility. Under
our model, the noise is time-varying intradaily. Using the eigenfunction representation
of the general stochastic volatility class of models, we quantify the forecasting performance
of several volatility measures under our model assumptions.
In the third paper, instead of assuming the standard additive model for the observed price
series, we specify the conditional distribution of the frictionless price given the available
information which includes quotes and volumes. We come up with new volatility measures
by characterizing the conditional mean of the integrated variance.
|
3 |
Mémoire longue, volatilité et gestion de portefeuilleCoulon, Jérôme 20 May 2009 (has links) (PDF)
Cette thèse porte sur l'étude de la mémoire longue de la volatilité des rendements d'actions. Dans une première partie, nous apportons une interprétation de la mémoire longue en termes de comportement d'agents grâce à un modèle de volatilité à mémoire longue dont les paramètres sont reliés aux comportements hétérogènes des agents pouvant être rationnels ou à rationalité limitée. Nous déterminons de manière théorique les conditions nécessaires à l'obtention de mémoire longue. Puis nous calibrons notre modèle à partir des séries de volatilité réalisée journalière d'actions américaines de moyennes et grandes capitalisations et observons le changement de comportement des agents entre la période précédant l'éclatement de la bulle internet et celle qui la suit. La deuxième partie est consacrée à la prise en compte de la mémoire longue en gestion de portefeuille. Nous commençons par proposer un modèle de choix de portefeuille à volatilité stochastique dans lequel la dynamique de la log-volatilité est caractérisée par un processus d'Ornstein-Uhlenbeck. Nous montrons que l'augmentation du niveau d'incertitude sur la volatilité future induit une révision du plan de consommation et d'investissement. Puis dans un deuxième modèle, nous introduisons la mémoire longue grâce au mouvement brownien fractionnaire. Cela a pour conséquence de transposer le système économique d'un cadre markovien à un cadre non-markovien. Nous fournissons donc une nouvelle méthode de résolution fondée sur la technique de Monte Carlo. Puis, nous montrons toute l'importance de modéliser correctement la volatilité et mettons en garde le gérant de portefeuille contre les erreurs de spécification de modèle.
|
4 |
Mesure et Prévision de la Volatilité pour les Actifs LiquidesChaker, Selma 04 1900 (has links)
Le prix efficient est latent, il est contaminé par les frictions microstructurelles ou
bruit. On explore la mesure et la prévision de la volatilité fondamentale en utilisant les
données à haute fréquence.
Dans le premier papier, en maintenant le cadre standard du modèle additif du bruit et
le prix efficient, on montre qu’en utilisant le volume de transaction, les volumes d’achat
et de vente, l’indicateur de la direction de transaction et la différence entre prix d’achat et
prix de vente pour absorber le bruit, on améliore la précision des estimateurs de volatilité.
Si le bruit n’est que partiellement absorbé, le bruit résiduel est plus proche d’un bruit
blanc que le bruit original, ce qui diminue la misspécification des caractéristiques du
bruit.
Dans le deuxième papier, on part d’un fait empirique qu’on modélise par une forme
linéaire de la variance du bruit microstructure en la volatilité fondamentale. Grâce à la
représentation de la classe générale des modèles de volatilité stochastique, on explore
la performance de prévision de différentes mesures de volatilité sous les hypothèses de
notre modèle.
Dans le troisième papier, on dérive de nouvelles mesures réalizées en utilisant les prix
et les volumes d’achat et de vente. Comme alternative au modèle additif standard pour
les prix contaminés avec le bruit microstructure, on fait des hypothèses sur la distribution
du prix sans frictions qui est supposé borné par les prix de vente et d’achat. / The high frequency observed price series is contaminated with market microstructure
frictions or noise. We explore the measurement and forecasting of the fundamental
volatility through novel approaches to the frictions’ problem.
In the first paper, while maintaining the standard framework of a noise-frictionless price
additive model, we use the trading volume, quoted depths, trade direction indicator and
bid-ask spread to get rid of the noise. The econometric model is a price impact linear
regression. We show that incorporating the cited liquidity costs variables delivers more
precise volatility estimators. If the noise is only partially absorbed, the remaining noise
is closer to a white noise than the original one, which lessens misspecification of the
noise characteristics. Our approach is also robust to a specific form of endogeneity under
which the common robust to noise measures are inconsistent.
In the second paper, we model the variance of the market microstructure noise that contaminates
the frictionless price as an affine function of the fundamental volatility. Under
our model, the noise is time-varying intradaily. Using the eigenfunction representation
of the general stochastic volatility class of models, we quantify the forecasting performance
of several volatility measures under our model assumptions.
In the third paper, instead of assuming the standard additive model for the observed price
series, we specify the conditional distribution of the frictionless price given the available
information which includes quotes and volumes. We come up with new volatility measures
by characterizing the conditional mean of the integrated variance.
|
5 |
Bootstrapping high frequency dataHounyo, Koomla Ulrich 07 1900 (has links)
Nous développons dans cette thèse, des méthodes de bootstrap pour les données financières de hautes fréquences. Les deux premiers essais focalisent sur les méthodes de bootstrap appliquées à l’approche de "pré-moyennement" et robustes à la présence d’erreurs de microstructure. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. En se basant sur cette ap- proche d’estimation de la volatilité intégrée en présence d’erreurs de microstructure, nous développons plusieurs méthodes de bootstrap qui préservent la structure de dépendance et l’hétérogénéité dans la moyenne des données originelles. Le troisième essai développe une méthode de bootstrap sous l’hypothèse de Gaussianité locale des données financières de hautes fréquences.
Le premier chapitre est intitulé: "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". Nous proposons dans ce chapitre, des méthodes de bootstrap robustes à la présence d’erreurs de microstructure. Particulièrement nous nous sommes focalisés sur la volatilité réalisée utilisant des rendements "pré-moyennés" proposés par Podolskij et Vetter (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à hautes fréquences consécutifs qui ne se chevauchent pas. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. Le non-chevauchement des blocs fait que les rendements "pré-moyennés" sont asymptotiquement indépendants, mais possiblement hétéroscédastiques. Ce qui motive l’application du wild bootstrap dans ce contexte. Nous montrons la validité théorique du bootstrap pour construire des intervalles de type percentile et percentile-t. Les simulations Monte Carlo montrent que le bootstrap peut améliorer les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques, pourvu que le choix de la variable externe soit fait de façon appropriée. Nous illustrons ces méthodes en utilisant des données financières réelles.
Le deuxième chapitre est intitulé : "Bootstrapping pre-averaged realized volatility under market microstructure noise". Nous développons dans ce chapitre une méthode de bootstrap par bloc basée sur l’approche "pré-moyennement" de Jacod et al. (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à haute fréquences consécutifs qui se chevauchent. Le chevauchement des blocs induit une forte dépendance dans la structure des rendements "pré-moyennés". En effet les rendements "pré-moyennés" sont m-dépendant avec m qui croît à une vitesse plus faible que la taille d’échantillon n. Ceci motive l’application d’un bootstrap par bloc spécifique. Nous montrons que le bloc bootstrap suggéré par Bühlmann et Künsch (1995) n’est valide que lorsque la volatilité est constante. Ceci est dû à l’hétérogénéité dans la moyenne des rendements "pré-moyennés" au carré lorsque la volatilité est stochastique. Nous proposons donc une nouvelle procédure de bootstrap qui combine le wild bootstrap et le bootstrap par bloc, de telle sorte que la dépendance sérielle des rendements "pré-moyennés" est préservée à l’intérieur des blocs et la condition d’homogénéité nécessaire pour la validité du bootstrap est respectée. Sous des conditions de taille de bloc, nous montrons que cette méthode est convergente. Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques. Nous illustrons cette méthode en utilisant des données financières réelles.
Le troisième chapitre est intitulé: "Bootstrapping realized covolatility measures under local Gaussianity assumption". Dans ce chapitre nous montrons, comment et dans quelle mesure on peut approximer les distributions des estimateurs de mesures de co-volatilité sous l’hypothèse de Gaussianité locale des rendements. En particulier nous proposons une nouvelle méthode de bootstrap sous ces hypothèses. Nous nous sommes focalisés sur la volatilité réalisée et sur le beta réalisé. Nous montrons que la nouvelle méthode de bootstrap appliquée au beta réalisé était capable de répliquer les cummulants au deuxième ordre, tandis qu’il procurait une amélioration au troisième degré lorsqu’elle est appliquée à la volatilité réalisée. Ces résultats améliorent donc les résultats existants dans cette littérature, notamment ceux de Gonçalves et Meddahi (2009) et de Dovonon, Gonçalves et Meddahi (2013). Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques et les résultats de bootstrap existants. Nous illustrons cette méthode en utilisant des données financières réelles. / We develop in this thesis bootstrap methods for high frequency financial data. The first two chapters focalise on bootstrap methods for the "pre-averaging" approach, which is robust to the presence of market microstructure effects. The main idea underlying this approach is that we can reduce the impact of the noise by pre-averaging high frequency returns that are possibly contaminated with market microstructure noise before applying a realized volatility-like statistic. Based on this approach, we develop several bootstrap methods, which preserve the dependence structure and the heterogeneity in the mean of the original data. The third chapter shows how and to what extent the local Gaussian- ity assumption can be explored to generate a bootstrap approximation for covolatility measures.
The first chapter is entitled "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". The main contribution of this chapter is to propose bootstrap methods for realized volatility-like estimators defined on pre-averaged returns. In particular, we focus on the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009). This statistic can be written (up to a bias correction term) as the (scaled) sum of squared pre-averaged returns, where the pre-averaging is done over all possible non-overlapping blocks of consecutive observations. Pre-averaging reduces the influence of the noise and allows for realized volatility estimation on the pre-averaged returns. The non-overlapping nature of the pre-averaged returns implies that these are asymptotically independent, but possibly heteroskedastic. This motivates the application of the wild bootstrap in this context. We provide a proof of the first order asymptotic validity of this method for percentile and percentile-t intervals. Our Monte Carlo simulations show that the wild bootstrap can improve the finite sample properties of the existing first order asymptotic theory provided we choose the external random variable appropriately.
The second chapter is entitled "Bootstrapping pre-averaged realized volatility under market microstructure noise ". In this chapter we propose a bootstrap method for inference on integrated volatility based on the pre-averaging approach of Jacod et al. (2009), where the pre-averaging is done over all possible overlapping blocks of consecutive observations. The overlapping nature of the pre-averaged returns implies that these are m-dependent with m growing slowly with the sample size n. This motivates the application of a blockwise bootstrap method. We show that the “blocks of blocks” bootstrap method suggested by Politis and Romano (1992) (and further studied by Bühlmann and Künsch (1995)) is valid only when volatility is constant. The failure of the blocks of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic. To preserve both the dependence and the heterogeneity of squared pre-averaged returns, we propose a novel procedure that combines the wild bootstrap with the blocks of blocks bootstrap. We provide a proof of the first order asymptotic validity of this method for percentile intervals. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves the finite sample properties of the existing first order asymptotic theory.
The third chapter is entitled "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption". The financial econometric of high frequency data litera- ture often assumed a local constancy of volatility and the Gaussianity properties of high frequency returns in order to carry out inference. In this chapter, we show how and to what extent the local Gaussianity assumption can be explored to generate a bootstrap approximation. We show the first-order asymptotic validity of the new wild bootstrap method, which uses the conditional local normality properties of financial high frequency returns. In addition to that we use Edgeworth expansions and Monte Carlo simulations to compare the accuracy of the bootstrap with other existing approaches. It is shown that at second order, the new wild bootstrap matches the cumulants of realized betas-based t-statistics, whereas it provides a third-order asymptotic refinement for realized volatility. Monte Carlo simulations suggest that our new wild bootstrap methods improve upon the first-order asymptotic theory in finite samples and outperform the existing bootstrap methods for realized covolatility measures. We use empirical work to illustrate its uses in practice.
|
6 |
Mémoire longue, volatilité et gestion de portefeuille / Long memory, volatility and portfolio managementCoulon, Jérôme 20 May 2009 (has links)
Cette thèse porte sur l’étude de la mémoire longue de la volatilité des rendements d’actions. Dans une première partie, nous apportons une interprétation de la mémoire longue en termes de comportement d’agents grâce à un modèle de volatilité à mémoire longue dont les paramètres sont reliés aux comportements hétérogènes des agents pouvant être rationnels ou à rationalité limitée. Nous déterminons de manière théorique les conditions nécessaires à l’obtention de mémoire longue. Puis nous calibrons notre modèle à partir des séries de volatilité réalisée journalière d’actions américaines de moyennes et grandes capitalisations et observons le changement de comportement des agents entre la période précédant l’éclatement de la bulle internet et celle qui la suit. La deuxième partie est consacrée à la prise en compte de la mémoire longue en gestion de portefeuille. Nous commençons par proposer un modèle de choix de portefeuille à volatilité stochastique dans lequel la dynamique de la log-volatilité est caractérisée par un processus d’Ornstein-Uhlenbeck. Nous montrons que l’augmentation du niveau d’incertitude sur la volatilité future induit une révision du plan de consommation et d’investissement. Puis dans un deuxième modèle, nous introduisons la mémoire longue grâce au mouvement brownien fractionnaire. Cela a pour conséquence de transposer le système économique d’un cadre markovien à un cadre non-markovien. Nous fournissons donc une nouvelle méthode de résolution fondée sur la technique de Monte Carlo. Puis, nous montrons toute l’importance de modéliser correctement la volatilité et mettons en garde le gérant de portefeuille contre les erreurs de spécification de modèle. / This PhD thesis is about the study of the long memory of the volatility of asset returns. In a first part, we bring an interpretation of long memory in terms of agents’ behavior through a long memory volatility model whose parameters are linked with the bounded rational agents’ heterogeneous behavior. We determine theoretically the necessary condition to get long memory. Then we calibrate our model from the daily realized volatility series of middle and large American capitalization stocks. Eventually, we observe the change in the agents’ behavior between the period before the internet bubble burst and the one after. The second part is devoted to the consideration of long memory in portfolio management. We start by suggesting a stochastic volatility portfolio model in which the dynamics of the log-volatility is characterized by an Ornstein-Uhlenbeck process. We show that when the uncertainty of the future volatility level increases, it induces the revision of the consumption and investment plan. Then in a second model, we introduce a long memory component by the use of a fractional Brownian motion. As a consequence, it transposes the economic system from a Markovian framework to a non-Markovian one. So we provide a new resolution method based on Monte Carlo technique. Then we show the high importance to well model the volatility and warn the portfolio manager against the misspecification errors of the model.
|
7 |
Efficient estimation using the characteristic function : theory and applications with high frequency dataKotchoni, Rachidi 05 1900 (has links)
The attached file is created with Scientific Workplace Latex / Nous abordons deux sujets distincts dans cette thèse: l'estimation de la volatilité des prix d'actifs financiers à partir des données à haute fréquence, et l'estimation des paramétres d'un processus aléatoire à partir de sa fonction caractéristique.
Le chapitre 1 s'intéresse à l'estimation de la volatilité des prix d'actifs. Nous supposons que les données à haute fréquence disponibles sont entachées de bruit de microstructure. Les propriétés que l'on prête au bruit sont déterminantes dans le choix de l'estimateur de la volatilité. Dans ce chapitre, nous spécifions un nouveau modèle dynamique pour le bruit de microstructure qui intègre trois propriétés importantes: (i) le bruit peut être autocorrélé, (ii) le retard maximal au delà duquel l'autocorrélation est nulle peut être une fonction croissante de la fréquence journalière d'observations; (iii) le bruit peut avoir une composante correlée avec le rendement efficient. Cette dernière composante est alors dite endogène. Ce modèle se différencie de ceux existant en ceci qu'il implique que l'autocorrélation d'ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d'observation tend vers l'infini.
Nous utilisons le cadre semi-paramétrique ainsi défini pour dériver un nouvel estimateur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente sous la forme d'une combinaison linéaire optimale de deux estimateurs aux propriétés différentes, l'optimalité étant défini en termes de minimisation de la variance. Les simulations indiquent que l'estimateur shrinkage a une variance plus petite que le meilleur des deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres du modèle de microstructure. Nous clôturons ce chapitre par une application empirique basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu'il est pertinent de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus d'estimation de la volatilité.
Les chapitres 2, 3 et 4 s'inscrivent dans la littérature économétrique qui traite de la méthode des moments généralisés. En effet, on rencontre en finance des modèles dont la fonction de vraisemblance n'est pas connue. On peut citer en guise d'exemple la loi stable ainsi que les modèles de diffusion observés en temps discrets. Les méthodes d'inférence basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement, on spécifie une condition de moment basée sur la différence entre la fonction caractéristique (conditionnelle) théorique et sa contrepartie empirique. Le défit ici est d'exploiter au mieux le continuum de conditions de moment ainsi spécifié pour atteindre la même efficacité que le maximum de vraisemblance dans les inférences.
Ce défit a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure CGMM (continuum GMM). La fonction objectif que ces auteurs proposent est une forme quadratique hilbertienne qui fait intervenir l'opérateur inverse de covariance associé au continuum de condition de moments. Cet opérateur inverse est régularisé à la Tikhonov pour en assurer l'existence globale et la continuité. Carrasco et Florens (2000) ont montré que l'estimateur obtenu en minimisant cette forme quadratique est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance si le paramètre de régularisation (α) tend vers zéro lorsque la taille de l'échatillon tend vers l'infini. La nature de la fonction objectif du CGMM soulève deux questions importantes. La première est celle de la calibration de α en pratique, et la seconde est liée à la présence d'intégrales multiples dans l'expression de la fonction objectif. C'est à ces deux problématiques qu'essayent de répondent les trois derniers chapitres de la présente thèse.
Dans le chapitre 2, nous proposons une méthode de calibration de α basée sur la minimisation de l'erreur quadratique moyenne (EQM) de l'estimateur. Nous suivons une approche similaire à celle de Newey et Smith (2004) pour calculer un développement d'ordre supérieur de l'EQM de l'estimateur CGMM de sorte à pouvoir examiner sa dépendance en α en échantillon fini. Nous proposons ensuite deux méthodes pour choisir α en pratique. La première se base sur le développement de l'EQM, et la seconde se base sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre un estimateur convergent de α optimal. Nos simulations confirment la pertinence de la calibration de α en pratique.
Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles univariés ou bivariés. Nous commençons par passer en revue les propriétés de convergence et de normalité asymptotique de l'estimateur CGMM. Nous proposons ensuite des recettes numériques pour l'implémentation. Enfin, nous conduisons des simulations Monte Carlo basée sur la loi stable. Ces simulations démontrent que le CGMM est une méthode fiable d'inférence. En guise d'application empirique, nous estimons par CGMM un modèle de variance autorégressif Gamma. Les résultats d'estimation confirment un résultat bien connu en finance: le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur la volatilité.
Lorsqu'on implémente le CGMM, une difficulté majeure réside dans l'évaluation numérique itérative des intégrales multiples présentes dans la fonction objectif. Les méthodes de quadrature sont en principe parmi les plus précises que l'on puisse utiliser dans le présent contexte. Malheureusement, le nombre de points de quadrature augmente exponentiellement en fonction de la dimensionalité (d) des intégrales. L'utilisation du CGMM devient pratiquement impossible dans les modèles multivariés et non markoviens où d≥3. Dans le chapitre 4, nous proposons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle" qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de ℝ^{d}. Chaque échantillon ainsi généré est utilisé pour produire un estimateur du paramètre d'intérêt. L'estimateur final que nous proposons est une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous proposons une étude par simulation et une application empirique basées sur des modèles autorégressifs Gamma.
Dans l'ensemble, nous faisons une utilisation intensive du bootstrap, une technique selon laquelle les propriétés statistiques d'une distribution inconnue peuvent être estimées à partir d'un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du bootstrap. / In estimating the integrated volatility of financial assets using noisy high frequency data, the time series properties assumed for the microstructure noise determines the proper choice of the volatility estimator. In the first chapter of the current thesis, we propose a new model for the microstructure noise with three important features. First of all, our model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to increase with the sampling frequency. And thirdly, the noise may include an endogenous part, that is, a piece that is correlated with the latent returns. The main difference between this microstructure model and existing ones is that it implies a first order autocorrelation that converges to 1 as the sampling frequency goes to infinity.
We use this semi-parametric model to derive a new shrinkage estimator for the integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-off by combining a consistent estimators with an inconsistent one. Simulation results show that the shrinkage estimator behaves better than the best of the two combined ones. We also propose some estimators for the parameters of the noise model. An empirical study based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for possible time dependence in the noise process.
Chapters 2, 3 and 4 pertain to the generalized method of moments based on the characteristic function. In fact, the likelihood functions of many financial econometrics models are not known in close form. For example, this is the case for the stable distribution and a discretely observed continuous time model. In these cases, one may estimate the parameter of interest by specifying a moment condition based on the difference between the theoretical (conditional) characteristic function and its empirical counterpart. The challenge is then to exploit the whole continuum of moment conditions hence defined to achieve the maximum likelihood efficiency.
This problem has been solved in Carrasco and Florens (2000) who propose the CGMM procedure. The objective function of the CGMM is a quadrqtic form on the Hilbert space defined by the moment function. That objective function depends on a Tikhonov-type regularized inverse of the covariance operator associated with the moment function. Carrasco and Florens (2000) have shown that the estimator obtained by minimizing the proposed objective function is asymptotically as efficient as the maximum likelihood estimator provided that the regularization parameter (α) converges to zero as the sample size goes to infinity. However, the nature of this objective function raises two important questions. First of all, how do we select α in practice? And secondly, how do we implement the CGMM when the multiplicity (d) of the integrals embedded in the objective-function d is large. These questions are tackled in the last three chapters of the thesis.
In Chapter 2, we propose to choose α by minimizing the approximate mean square error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the MSE on α. We provide two data-driven methods for selecting the regularization parameter in practice. The first one relies on the higher-order expansion of the MSE whereas the second one uses only simulations. We show that our simulation technique delivers a consistent estimator of α. Our Monte Carlo simulations confirm the importance of the optimal selection of α.
The goal of Chapter 3 is to illustrate how to efficiently implement the CGMM for d≤2. To start with, we review the consistency and asymptotic normality properties of the CGMM estimator. Next we suggest some numerical recipes for its implementation. Finally, we carry out a simulation study with the stable distribution that confirms the accuracy of the CGMM as an inference method. An empirical application based on the autoregressive variance Gamma model led to a well-known conclusion: investors require a positive premium for bearing the expected risk while a negative premium is attached to the unexpected risk.
In implementing the characteristic function based CGMM, a major difficulty lies in the evaluation of the multiple integrals embedded in the objective function. Numerical quadratures are among the most accurate methods that can be used in the present context. Unfortunately, the number of quadrature points grows exponentially with d. When the data generating process is Markov or dependent, the accurate implementation of the CGMM becomes roughly unfeasible when d≥3. In Chapter 4, we propose a strategy that consists in creating univariate samples by taking a linear combination of the elements of the original vector process. The weights of the linear combinations are drawn from a normalized set of ℝ^{d}. Each univariate index generated in this way is called a frequency domain bootstrap sample that can be used to compute an estimator of the parameter of interest. Finally, all the possible estimators obtained in this fashion can be aggregated to obtain the final estimator. The optimal aggregation rule is discussed in the paper. The overall method is illustrated by a simulation study and an empirical application based on autoregressive Gamma models.
This thesis makes an extensive use of the bootstrap, a technique according to which the statistical properties of an unknown distribution can be estimated from an estimate of that distribution. It is thus possible to improve our simulations and empirical results by using the state-of-the-art refinements of the bootstrap methodology.
|
8 |
Estimation of State Space Models and Stochastic VolatilityMiller Lira, Shirley 09 1900 (has links)
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique.
Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières.
Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés.
Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière. / My thesis consists of three chapters related to the estimation of state space models and stochastic volatility models.
In the first chapter we develop a computationally efficient procedure for state smoothing in Gaussian linear state space models. We show how to exploit the special structure of state-space models to draw latent states efficiently. We analyze the computational efficiency of Kalman-filter-based methods, the Cholesky Factor Algorithm, and our new method using counts of operations and computational experiments. We show that for many important cases, our method is most efficient. Gains are particularly large for cases where the dimension of observed variables is large or where one makes repeated draws of states for the same parameter values. We apply our method to a multivariate Poisson model with time-varying intensities, which we use to analyze financial market transaction count data.
In the second chapter, we propose a new technique for the analysis of multivariate stochastic volatility models, based on efficient draws of volatility from its conditional posterior distribution. It applies to models with several kinds of cross-sectional dependence. Full VAR coefficient and covariance matrices give cross-sectional volatility dependence. Mean factor structure allows conditional correlations, given states, to vary in time. The conditional return distribution features Student's t marginals, with asset-specific degrees of freedom, and copulas describing cross-sectional dependence. We draw volatility as a block in the time dimension and one-at-a-time in the cross-section. Following McCausland(2012), we use close approximations of the conditional posterior distributions of volatility blocks as Metropolis-Hastings proposal distributions. We illustrate using daily return data for ten currencies. We report results for univariate stochastic volatility models and two multivariate models.
In the third chapter, we evaluate the information contributed by (variations of) realized volatility to the estimation and forecasting of volatility when prices are measured with and without error using a stochastic volatility model. We consider the viewpoint of an investor for whom volatility is an unknown latent variable and realized volatility is a sample quantity which contains information about it. We use Bayesian Markov Chain Monte Carlo (MCMC) methods to estimate the models, which allow the formulation of the posterior densities of in-sample volatilities, and the predictive densities of future volatilities. We then compare the volatility forecasts and hit rates from predictions that use and do not use the information contained in realized volatility. This approach is in contrast with most of the empirical realized volatility literature which most often documents the ability of realized volatility to forecast itself. Our empirical applications use daily index returns and foreign exchange during the 2008-2009 financial crisis.
|
9 |
Estimation of State Space Models and Stochastic VolatilityMiller Lira, Shirley 09 1900 (has links)
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique.
Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières.
Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés.
Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière. / My thesis consists of three chapters related to the estimation of state space models and stochastic volatility models.
In the first chapter we develop a computationally efficient procedure for state smoothing in Gaussian linear state space models. We show how to exploit the special structure of state-space models to draw latent states efficiently. We analyze the computational efficiency of Kalman-filter-based methods, the Cholesky Factor Algorithm, and our new method using counts of operations and computational experiments. We show that for many important cases, our method is most efficient. Gains are particularly large for cases where the dimension of observed variables is large or where one makes repeated draws of states for the same parameter values. We apply our method to a multivariate Poisson model with time-varying intensities, which we use to analyze financial market transaction count data.
In the second chapter, we propose a new technique for the analysis of multivariate stochastic volatility models, based on efficient draws of volatility from its conditional posterior distribution. It applies to models with several kinds of cross-sectional dependence. Full VAR coefficient and covariance matrices give cross-sectional volatility dependence. Mean factor structure allows conditional correlations, given states, to vary in time. The conditional return distribution features Student's t marginals, with asset-specific degrees of freedom, and copulas describing cross-sectional dependence. We draw volatility as a block in the time dimension and one-at-a-time in the cross-section. Following McCausland(2012), we use close approximations of the conditional posterior distributions of volatility blocks as Metropolis-Hastings proposal distributions. We illustrate using daily return data for ten currencies. We report results for univariate stochastic volatility models and two multivariate models.
In the third chapter, we evaluate the information contributed by (variations of) realized volatility to the estimation and forecasting of volatility when prices are measured with and without error using a stochastic volatility model. We consider the viewpoint of an investor for whom volatility is an unknown latent variable and realized volatility is a sample quantity which contains information about it. We use Bayesian Markov Chain Monte Carlo (MCMC) methods to estimate the models, which allow the formulation of the posterior densities of in-sample volatilities, and the predictive densities of future volatilities. We then compare the volatility forecasts and hit rates from predictions that use and do not use the information contained in realized volatility. This approach is in contrast with most of the empirical realized volatility literature which most often documents the ability of realized volatility to forecast itself. Our empirical applications use daily index returns and foreign exchange during the 2008-2009 financial crisis.
|
10 |
Efficient estimation using the characteristic function : theory and applications with high frequency dataKotchoni, Rachidi 05 1900 (has links)
Nous abordons deux sujets distincts dans cette thèse: l'estimation de la volatilité des prix d'actifs financiers à partir des données à haute fréquence, et l'estimation des paramétres d'un processus aléatoire à partir de sa fonction caractéristique.
Le chapitre 1 s'intéresse à l'estimation de la volatilité des prix d'actifs. Nous supposons que les données à haute fréquence disponibles sont entachées de bruit de microstructure. Les propriétés que l'on prête au bruit sont déterminantes dans le choix de l'estimateur de la volatilité. Dans ce chapitre, nous spécifions un nouveau modèle dynamique pour le bruit de microstructure qui intègre trois propriétés importantes: (i) le bruit peut être autocorrélé, (ii) le retard maximal au delà duquel l'autocorrélation est nulle peut être une fonction croissante de la fréquence journalière d'observations; (iii) le bruit peut avoir une composante correlée avec le rendement efficient. Cette dernière composante est alors dite endogène. Ce modèle se différencie de ceux existant en ceci qu'il implique que l'autocorrélation d'ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d'observation tend vers l'infini.
Nous utilisons le cadre semi-paramétrique ainsi défini pour dériver un nouvel estimateur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente sous la forme d'une combinaison linéaire optimale de deux estimateurs aux propriétés différentes, l'optimalité étant défini en termes de minimisation de la variance. Les simulations indiquent que l'estimateur shrinkage a une variance plus petite que le meilleur des deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres du modèle de microstructure. Nous clôturons ce chapitre par une application empirique basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu'il est pertinent de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus d'estimation de la volatilité.
Les chapitres 2, 3 et 4 s'inscrivent dans la littérature économétrique qui traite de la méthode des moments généralisés. En effet, on rencontre en finance des modèles dont la fonction de vraisemblance n'est pas connue. On peut citer en guise d'exemple la loi stable ainsi que les modèles de diffusion observés en temps discrets. Les méthodes d'inférence basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement, on spécifie une condition de moment basée sur la différence entre la fonction caractéristique (conditionnelle) théorique et sa contrepartie empirique. Le défit ici est d'exploiter au mieux le continuum de conditions de moment ainsi spécifié pour atteindre la même efficacité que le maximum de vraisemblance dans les inférences.
Ce défit a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure CGMM (continuum GMM). La fonction objectif que ces auteurs proposent est une forme quadratique hilbertienne qui fait intervenir l'opérateur inverse de covariance associé au continuum de condition de moments. Cet opérateur inverse est régularisé à la Tikhonov pour en assurer l'existence globale et la continuité. Carrasco et Florens (2000) ont montré que l'estimateur obtenu en minimisant cette forme quadratique est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance si le paramètre de régularisation (α) tend vers zéro lorsque la taille de l'échatillon tend vers l'infini. La nature de la fonction objectif du CGMM soulève deux questions importantes. La première est celle de la calibration de α en pratique, et la seconde est liée à la présence d'intégrales multiples dans l'expression de la fonction objectif. C'est à ces deux problématiques qu'essayent de répondent les trois derniers chapitres de la présente thèse.
Dans le chapitre 2, nous proposons une méthode de calibration de α basée sur la minimisation de l'erreur quadratique moyenne (EQM) de l'estimateur. Nous suivons une approche similaire à celle de Newey et Smith (2004) pour calculer un développement d'ordre supérieur de l'EQM de l'estimateur CGMM de sorte à pouvoir examiner sa dépendance en α en échantillon fini. Nous proposons ensuite deux méthodes pour choisir α en pratique. La première se base sur le développement de l'EQM, et la seconde se base sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre un estimateur convergent de α optimal. Nos simulations confirment la pertinence de la calibration de α en pratique.
Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles univariés ou bivariés. Nous commençons par passer en revue les propriétés de convergence et de normalité asymptotique de l'estimateur CGMM. Nous proposons ensuite des recettes numériques pour l'implémentation. Enfin, nous conduisons des simulations Monte Carlo basée sur la loi stable. Ces simulations démontrent que le CGMM est une méthode fiable d'inférence. En guise d'application empirique, nous estimons par CGMM un modèle de variance autorégressif Gamma. Les résultats d'estimation confirment un résultat bien connu en finance: le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur la volatilité.
Lorsqu'on implémente le CGMM, une difficulté majeure réside dans l'évaluation numérique itérative des intégrales multiples présentes dans la fonction objectif. Les méthodes de quadrature sont en principe parmi les plus précises que l'on puisse utiliser dans le présent contexte. Malheureusement, le nombre de points de quadrature augmente exponentiellement en fonction de la dimensionalité (d) des intégrales. L'utilisation du CGMM devient pratiquement impossible dans les modèles multivariés et non markoviens où d≥3. Dans le chapitre 4, nous proposons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle" qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de ℝ^{d}. Chaque échantillon ainsi généré est utilisé pour produire un estimateur du paramètre d'intérêt. L'estimateur final que nous proposons est une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous proposons une étude par simulation et une application empirique basées sur des modèles autorégressifs Gamma.
Dans l'ensemble, nous faisons une utilisation intensive du bootstrap, une technique selon laquelle les propriétés statistiques d'une distribution inconnue peuvent être estimées à partir d'un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du bootstrap. / In estimating the integrated volatility of financial assets using noisy high frequency data, the time series properties assumed for the microstructure noise determines the proper choice of the volatility estimator. In the first chapter of the current thesis, we propose a new model for the microstructure noise with three important features. First of all, our model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to increase with the sampling frequency. And thirdly, the noise may include an endogenous part, that is, a piece that is correlated with the latent returns. The main difference between this microstructure model and existing ones is that it implies a first order autocorrelation that converges to 1 as the sampling frequency goes to infinity.
We use this semi-parametric model to derive a new shrinkage estimator for the integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-off by combining a consistent estimators with an inconsistent one. Simulation results show that the shrinkage estimator behaves better than the best of the two combined ones. We also propose some estimators for the parameters of the noise model. An empirical study based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for possible time dependence in the noise process.
Chapters 2, 3 and 4 pertain to the generalized method of moments based on the characteristic function. In fact, the likelihood functions of many financial econometrics models are not known in close form. For example, this is the case for the stable distribution and a discretely observed continuous time model. In these cases, one may estimate the parameter of interest by specifying a moment condition based on the difference between the theoretical (conditional) characteristic function and its empirical counterpart. The challenge is then to exploit the whole continuum of moment conditions hence defined to achieve the maximum likelihood efficiency.
This problem has been solved in Carrasco and Florens (2000) who propose the CGMM procedure. The objective function of the CGMM is a quadrqtic form on the Hilbert space defined by the moment function. That objective function depends on a Tikhonov-type regularized inverse of the covariance operator associated with the moment function. Carrasco and Florens (2000) have shown that the estimator obtained by minimizing the proposed objective function is asymptotically as efficient as the maximum likelihood estimator provided that the regularization parameter (α) converges to zero as the sample size goes to infinity. However, the nature of this objective function raises two important questions. First of all, how do we select α in practice? And secondly, how do we implement the CGMM when the multiplicity (d) of the integrals embedded in the objective-function d is large. These questions are tackled in the last three chapters of the thesis.
In Chapter 2, we propose to choose α by minimizing the approximate mean square error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the MSE on α. We provide two data-driven methods for selecting the regularization parameter in practice. The first one relies on the higher-order expansion of the MSE whereas the second one uses only simulations. We show that our simulation technique delivers a consistent estimator of α. Our Monte Carlo simulations confirm the importance of the optimal selection of α.
The goal of Chapter 3 is to illustrate how to efficiently implement the CGMM for d≤2. To start with, we review the consistency and asymptotic normality properties of the CGMM estimator. Next we suggest some numerical recipes for its implementation. Finally, we carry out a simulation study with the stable distribution that confirms the accuracy of the CGMM as an inference method. An empirical application based on the autoregressive variance Gamma model led to a well-known conclusion: investors require a positive premium for bearing the expected risk while a negative premium is attached to the unexpected risk.
In implementing the characteristic function based CGMM, a major difficulty lies in the evaluation of the multiple integrals embedded in the objective function. Numerical quadratures are among the most accurate methods that can be used in the present context. Unfortunately, the number of quadrature points grows exponentially with d. When the data generating process is Markov or dependent, the accurate implementation of the CGMM becomes roughly unfeasible when d≥3. In Chapter 4, we propose a strategy that consists in creating univariate samples by taking a linear combination of the elements of the original vector process. The weights of the linear combinations are drawn from a normalized set of ℝ^{d}. Each univariate index generated in this way is called a frequency domain bootstrap sample that can be used to compute an estimator of the parameter of interest. Finally, all the possible estimators obtained in this fashion can be aggregated to obtain the final estimator. The optimal aggregation rule is discussed in the paper. The overall method is illustrated by a simulation study and an empirical application based on autoregressive Gamma models.
This thesis makes an extensive use of the bootstrap, a technique according to which the statistical properties of an unknown distribution can be estimated from an estimate of that distribution. It is thus possible to improve our simulations and empirical results by using the state-of-the-art refinements of the bootstrap methodology. / The attached file is created with Scientific Workplace Latex
|
Page generated in 0.0898 seconds