Spelling suggestions: "subject:"connées haute fréquence"" "subject:"connées haute réquence""
1 |
Mesure et Prévision de la Volatilité pour les Actifs LiquidesChaker, Selma 04 1900 (has links)
Le prix efficient est latent, il est contaminé par les frictions microstructurelles ou
bruit. On explore la mesure et la prévision de la volatilité fondamentale en utilisant les
données à haute fréquence.
Dans le premier papier, en maintenant le cadre standard du modèle additif du bruit et
le prix efficient, on montre qu’en utilisant le volume de transaction, les volumes d’achat
et de vente, l’indicateur de la direction de transaction et la différence entre prix d’achat et
prix de vente pour absorber le bruit, on améliore la précision des estimateurs de volatilité.
Si le bruit n’est que partiellement absorbé, le bruit résiduel est plus proche d’un bruit
blanc que le bruit original, ce qui diminue la misspécification des caractéristiques du
bruit.
Dans le deuxième papier, on part d’un fait empirique qu’on modélise par une forme
linéaire de la variance du bruit microstructure en la volatilité fondamentale. Grâce à la
représentation de la classe générale des modèles de volatilité stochastique, on explore
la performance de prévision de différentes mesures de volatilité sous les hypothèses de
notre modèle.
Dans le troisième papier, on dérive de nouvelles mesures réalizées en utilisant les prix
et les volumes d’achat et de vente. Comme alternative au modèle additif standard pour
les prix contaminés avec le bruit microstructure, on fait des hypothèses sur la distribution
du prix sans frictions qui est supposé borné par les prix de vente et d’achat. / The high frequency observed price series is contaminated with market microstructure
frictions or noise. We explore the measurement and forecasting of the fundamental
volatility through novel approaches to the frictions’ problem.
In the first paper, while maintaining the standard framework of a noise-frictionless price
additive model, we use the trading volume, quoted depths, trade direction indicator and
bid-ask spread to get rid of the noise. The econometric model is a price impact linear
regression. We show that incorporating the cited liquidity costs variables delivers more
precise volatility estimators. If the noise is only partially absorbed, the remaining noise
is closer to a white noise than the original one, which lessens misspecification of the
noise characteristics. Our approach is also robust to a specific form of endogeneity under
which the common robust to noise measures are inconsistent.
In the second paper, we model the variance of the market microstructure noise that contaminates
the frictionless price as an affine function of the fundamental volatility. Under
our model, the noise is time-varying intradaily. Using the eigenfunction representation
of the general stochastic volatility class of models, we quantify the forecasting performance
of several volatility measures under our model assumptions.
In the third paper, instead of assuming the standard additive model for the observed price
series, we specify the conditional distribution of the frictionless price given the available
information which includes quotes and volumes. We come up with new volatility measures
by characterizing the conditional mean of the integrated variance.
|
2 |
Observations bruitées d'une diffusion. Estimation, filtrage, applications.Favetto, Benjamin 30 September 2010 (has links) (PDF)
Les modèles aléatoires basés sur l'observation bruitée de diffusions discrétisées sont couramment utilisés en biologie ou en finance pour rendre compte de la présence d'erreur (ou bruit) entâchant la mesure d'un phénomène dont le comportement est dirigé par une équation différentielle stochastique. Deux questions statistiques sont liées à ces modèles : l'estimation d'un paramètre theta déterminant le comportement de la diffusion cachée, et le calcul du filtre optimal, ou d'une approximation. La première partie de cette thèse porte sur l'étude d'un modèle d'Ornstein-Uhlenbeck bidimensionnel partiellement observé et bruité, en lien avec l'estimation de paramètres de microvascularisation pour un modèle pharmacocinétique stochastique. Plusieurs résultats sur données médicales sont présentés. Dans la seconde partie, des estimateurs pour les paramètres de la diffusion cachée, sont obtenus dans un contexte de données haute fréquence, comme minima de fonctions de contraste ou comme zéros de fonctions d'estimation basées sur des moyennes locales d'observations bruitées. On montre en particulier la consistence et la normalité asymptotique de ces estimateurs. Enfin, la troisième partie étudie la tension de la suite des variances asymptotiques obtenues dans le théorème central limite associé à l'approximation particulaire du filtre et de la prédiction dans un modèle de Markov caché.
|
3 |
Mesure et Prévision de la Volatilité pour les Actifs LiquidesChaker, Selma 04 1900 (has links)
Le prix efficient est latent, il est contaminé par les frictions microstructurelles ou
bruit. On explore la mesure et la prévision de la volatilité fondamentale en utilisant les
données à haute fréquence.
Dans le premier papier, en maintenant le cadre standard du modèle additif du bruit et
le prix efficient, on montre qu’en utilisant le volume de transaction, les volumes d’achat
et de vente, l’indicateur de la direction de transaction et la différence entre prix d’achat et
prix de vente pour absorber le bruit, on améliore la précision des estimateurs de volatilité.
Si le bruit n’est que partiellement absorbé, le bruit résiduel est plus proche d’un bruit
blanc que le bruit original, ce qui diminue la misspécification des caractéristiques du
bruit.
Dans le deuxième papier, on part d’un fait empirique qu’on modélise par une forme
linéaire de la variance du bruit microstructure en la volatilité fondamentale. Grâce à la
représentation de la classe générale des modèles de volatilité stochastique, on explore
la performance de prévision de différentes mesures de volatilité sous les hypothèses de
notre modèle.
Dans le troisième papier, on dérive de nouvelles mesures réalizées en utilisant les prix
et les volumes d’achat et de vente. Comme alternative au modèle additif standard pour
les prix contaminés avec le bruit microstructure, on fait des hypothèses sur la distribution
du prix sans frictions qui est supposé borné par les prix de vente et d’achat. / The high frequency observed price series is contaminated with market microstructure
frictions or noise. We explore the measurement and forecasting of the fundamental
volatility through novel approaches to the frictions’ problem.
In the first paper, while maintaining the standard framework of a noise-frictionless price
additive model, we use the trading volume, quoted depths, trade direction indicator and
bid-ask spread to get rid of the noise. The econometric model is a price impact linear
regression. We show that incorporating the cited liquidity costs variables delivers more
precise volatility estimators. If the noise is only partially absorbed, the remaining noise
is closer to a white noise than the original one, which lessens misspecification of the
noise characteristics. Our approach is also robust to a specific form of endogeneity under
which the common robust to noise measures are inconsistent.
In the second paper, we model the variance of the market microstructure noise that contaminates
the frictionless price as an affine function of the fundamental volatility. Under
our model, the noise is time-varying intradaily. Using the eigenfunction representation
of the general stochastic volatility class of models, we quantify the forecasting performance
of several volatility measures under our model assumptions.
In the third paper, instead of assuming the standard additive model for the observed price
series, we specify the conditional distribution of the frictionless price given the available
information which includes quotes and volumes. We come up with new volatility measures
by characterizing the conditional mean of the integrated variance.
|
4 |
Bootstrapping high frequency dataHounyo, Koomla Ulrich 07 1900 (has links)
Nous développons dans cette thèse, des méthodes de bootstrap pour les données financières de hautes fréquences. Les deux premiers essais focalisent sur les méthodes de bootstrap appliquées à l’approche de "pré-moyennement" et robustes à la présence d’erreurs de microstructure. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. En se basant sur cette ap- proche d’estimation de la volatilité intégrée en présence d’erreurs de microstructure, nous développons plusieurs méthodes de bootstrap qui préservent la structure de dépendance et l’hétérogénéité dans la moyenne des données originelles. Le troisième essai développe une méthode de bootstrap sous l’hypothèse de Gaussianité locale des données financières de hautes fréquences.
Le premier chapitre est intitulé: "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". Nous proposons dans ce chapitre, des méthodes de bootstrap robustes à la présence d’erreurs de microstructure. Particulièrement nous nous sommes focalisés sur la volatilité réalisée utilisant des rendements "pré-moyennés" proposés par Podolskij et Vetter (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à hautes fréquences consécutifs qui ne se chevauchent pas. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. Le non-chevauchement des blocs fait que les rendements "pré-moyennés" sont asymptotiquement indépendants, mais possiblement hétéroscédastiques. Ce qui motive l’application du wild bootstrap dans ce contexte. Nous montrons la validité théorique du bootstrap pour construire des intervalles de type percentile et percentile-t. Les simulations Monte Carlo montrent que le bootstrap peut améliorer les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques, pourvu que le choix de la variable externe soit fait de façon appropriée. Nous illustrons ces méthodes en utilisant des données financières réelles.
Le deuxième chapitre est intitulé : "Bootstrapping pre-averaged realized volatility under market microstructure noise". Nous développons dans ce chapitre une méthode de bootstrap par bloc basée sur l’approche "pré-moyennement" de Jacod et al. (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à haute fréquences consécutifs qui se chevauchent. Le chevauchement des blocs induit une forte dépendance dans la structure des rendements "pré-moyennés". En effet les rendements "pré-moyennés" sont m-dépendant avec m qui croît à une vitesse plus faible que la taille d’échantillon n. Ceci motive l’application d’un bootstrap par bloc spécifique. Nous montrons que le bloc bootstrap suggéré par Bühlmann et Künsch (1995) n’est valide que lorsque la volatilité est constante. Ceci est dû à l’hétérogénéité dans la moyenne des rendements "pré-moyennés" au carré lorsque la volatilité est stochastique. Nous proposons donc une nouvelle procédure de bootstrap qui combine le wild bootstrap et le bootstrap par bloc, de telle sorte que la dépendance sérielle des rendements "pré-moyennés" est préservée à l’intérieur des blocs et la condition d’homogénéité nécessaire pour la validité du bootstrap est respectée. Sous des conditions de taille de bloc, nous montrons que cette méthode est convergente. Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques. Nous illustrons cette méthode en utilisant des données financières réelles.
Le troisième chapitre est intitulé: "Bootstrapping realized covolatility measures under local Gaussianity assumption". Dans ce chapitre nous montrons, comment et dans quelle mesure on peut approximer les distributions des estimateurs de mesures de co-volatilité sous l’hypothèse de Gaussianité locale des rendements. En particulier nous proposons une nouvelle méthode de bootstrap sous ces hypothèses. Nous nous sommes focalisés sur la volatilité réalisée et sur le beta réalisé. Nous montrons que la nouvelle méthode de bootstrap appliquée au beta réalisé était capable de répliquer les cummulants au deuxième ordre, tandis qu’il procurait une amélioration au troisième degré lorsqu’elle est appliquée à la volatilité réalisée. Ces résultats améliorent donc les résultats existants dans cette littérature, notamment ceux de Gonçalves et Meddahi (2009) et de Dovonon, Gonçalves et Meddahi (2013). Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques et les résultats de bootstrap existants. Nous illustrons cette méthode en utilisant des données financières réelles. / We develop in this thesis bootstrap methods for high frequency financial data. The first two chapters focalise on bootstrap methods for the "pre-averaging" approach, which is robust to the presence of market microstructure effects. The main idea underlying this approach is that we can reduce the impact of the noise by pre-averaging high frequency returns that are possibly contaminated with market microstructure noise before applying a realized volatility-like statistic. Based on this approach, we develop several bootstrap methods, which preserve the dependence structure and the heterogeneity in the mean of the original data. The third chapter shows how and to what extent the local Gaussian- ity assumption can be explored to generate a bootstrap approximation for covolatility measures.
The first chapter is entitled "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". The main contribution of this chapter is to propose bootstrap methods for realized volatility-like estimators defined on pre-averaged returns. In particular, we focus on the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009). This statistic can be written (up to a bias correction term) as the (scaled) sum of squared pre-averaged returns, where the pre-averaging is done over all possible non-overlapping blocks of consecutive observations. Pre-averaging reduces the influence of the noise and allows for realized volatility estimation on the pre-averaged returns. The non-overlapping nature of the pre-averaged returns implies that these are asymptotically independent, but possibly heteroskedastic. This motivates the application of the wild bootstrap in this context. We provide a proof of the first order asymptotic validity of this method for percentile and percentile-t intervals. Our Monte Carlo simulations show that the wild bootstrap can improve the finite sample properties of the existing first order asymptotic theory provided we choose the external random variable appropriately.
The second chapter is entitled "Bootstrapping pre-averaged realized volatility under market microstructure noise ". In this chapter we propose a bootstrap method for inference on integrated volatility based on the pre-averaging approach of Jacod et al. (2009), where the pre-averaging is done over all possible overlapping blocks of consecutive observations. The overlapping nature of the pre-averaged returns implies that these are m-dependent with m growing slowly with the sample size n. This motivates the application of a blockwise bootstrap method. We show that the “blocks of blocks” bootstrap method suggested by Politis and Romano (1992) (and further studied by Bühlmann and Künsch (1995)) is valid only when volatility is constant. The failure of the blocks of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic. To preserve both the dependence and the heterogeneity of squared pre-averaged returns, we propose a novel procedure that combines the wild bootstrap with the blocks of blocks bootstrap. We provide a proof of the first order asymptotic validity of this method for percentile intervals. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves the finite sample properties of the existing first order asymptotic theory.
The third chapter is entitled "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption". The financial econometric of high frequency data litera- ture often assumed a local constancy of volatility and the Gaussianity properties of high frequency returns in order to carry out inference. In this chapter, we show how and to what extent the local Gaussianity assumption can be explored to generate a bootstrap approximation. We show the first-order asymptotic validity of the new wild bootstrap method, which uses the conditional local normality properties of financial high frequency returns. In addition to that we use Edgeworth expansions and Monte Carlo simulations to compare the accuracy of the bootstrap with other existing approaches. It is shown that at second order, the new wild bootstrap matches the cumulants of realized betas-based t-statistics, whereas it provides a third-order asymptotic refinement for realized volatility. Monte Carlo simulations suggest that our new wild bootstrap methods improve upon the first-order asymptotic theory in finite samples and outperform the existing bootstrap methods for realized covolatility measures. We use empirical work to illustrate its uses in practice.
|
5 |
DYNAMIQUE EROSIVE ACTUELLE ET TRANSFERTS FLUVIATILES DANS L'OUEST DU BASSIN DE PARIS. Exemple de bassins versants littoraux en Haute Normandie : le Dun, la Ganzeville et l'Yères.Lequien, A. 14 December 2006 (has links) (PDF)
La compréhension des transferts sédimentaires depuis les zones " source " jusqu'aux zones de dépôt des sédiments constitue un enjeu majeur pour la lutte contre l'érosion des sols et la qualité des eaux. Portant sur de petits bassins versants côtiers de l'Ouest du bassin parisien, l'intérêt de ce travail est de présenter une démarche intégrée de la dynamique érosive à l'échelle du bassin versant, depuis l'analyse de la stabilité structurale des sols jusqu'au suivi haute fréquence des transferts de matières en rivière. L'objectif est d'identifier les facteurs contrôlant le ruissellement et l'érosion sur ces sites et de proposer une estimation des apports fluviatiles de matières en suspension (MES) à la Manche orientale. Les résultats obtenus soulignent que malgré des sols limoneux peu structurés générant des taux d'érosion à la parcelle importants, les bilans d'érosion enregistrés en rivière sont parmi les plus faibles du monde (10,1 t.km-2.an-1 pour le bassin de l'Yères, 1,3 t.km-2.an-1 pour le bassin du Dun et 6,6 t.km-2.an-1 pour le bassin de la Ganzeville). La comparaison de ces données avec celles de 214 bassins versants mondiaux montre que ces faibles bilans sont expliqués par la taille des bassins étudiés (< 1000 km2), le relief modéré et le faible débit spécifique. Régionalement, ce dernier facteur est contraint par un fonctionnement hydrologique karstique, qui est à l'origine non seulement du déficit de la balance des écoulements de surface mais aussi d'un stockage intrakarstique de matériaux fins issus de l'érosion des sols. Les résultats mettent en évidence des échanges nappe-rivière très importants sur les sites d'étude : la contribution des eaux souterraines au débit de surface est de l'ordre de 90 %. Concernant les apports fluviatiles de MES à la Manche orientale, l'extrapolation des bilans d'érosion obtenus à l'ensemble des fleuves côtiers du littoral haut-normand conduit à une estimation du flux exporté à la mer de 48 500 t.an-1. Issu de l'érosion des bassins versants côtiers, ce flux de MES apparait très faible tant à l'échelle mondiale que régionale où le flux de MES de la Seine atteint en moyenne 715 000 t.an-1 à Poses en amont de l'estuaire.
|
6 |
Estimation of State Space Models and Stochastic VolatilityMiller Lira, Shirley 09 1900 (has links)
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique.
Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières.
Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés.
Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière. / My thesis consists of three chapters related to the estimation of state space models and stochastic volatility models.
In the first chapter we develop a computationally efficient procedure for state smoothing in Gaussian linear state space models. We show how to exploit the special structure of state-space models to draw latent states efficiently. We analyze the computational efficiency of Kalman-filter-based methods, the Cholesky Factor Algorithm, and our new method using counts of operations and computational experiments. We show that for many important cases, our method is most efficient. Gains are particularly large for cases where the dimension of observed variables is large or where one makes repeated draws of states for the same parameter values. We apply our method to a multivariate Poisson model with time-varying intensities, which we use to analyze financial market transaction count data.
In the second chapter, we propose a new technique for the analysis of multivariate stochastic volatility models, based on efficient draws of volatility from its conditional posterior distribution. It applies to models with several kinds of cross-sectional dependence. Full VAR coefficient and covariance matrices give cross-sectional volatility dependence. Mean factor structure allows conditional correlations, given states, to vary in time. The conditional return distribution features Student's t marginals, with asset-specific degrees of freedom, and copulas describing cross-sectional dependence. We draw volatility as a block in the time dimension and one-at-a-time in the cross-section. Following McCausland(2012), we use close approximations of the conditional posterior distributions of volatility blocks as Metropolis-Hastings proposal distributions. We illustrate using daily return data for ten currencies. We report results for univariate stochastic volatility models and two multivariate models.
In the third chapter, we evaluate the information contributed by (variations of) realized volatility to the estimation and forecasting of volatility when prices are measured with and without error using a stochastic volatility model. We consider the viewpoint of an investor for whom volatility is an unknown latent variable and realized volatility is a sample quantity which contains information about it. We use Bayesian Markov Chain Monte Carlo (MCMC) methods to estimate the models, which allow the formulation of the posterior densities of in-sample volatilities, and the predictive densities of future volatilities. We then compare the volatility forecasts and hit rates from predictions that use and do not use the information contained in realized volatility. This approach is in contrast with most of the empirical realized volatility literature which most often documents the ability of realized volatility to forecast itself. Our empirical applications use daily index returns and foreign exchange during the 2008-2009 financial crisis.
|
7 |
Analyse du processus de diffusion des informations sur les marchés financiers : anticipation, publication et impact / Heterogeneity in Macroeconomic News Expectations : a disaggregate level analysisEl Ouadghiri, Imane 01 October 2015 (has links)
Les marchés financiers sont sujets quotidiennement à la diffusion de statistiques économiques ainsi que leurs prévisions par des institutions publiques et privées. Ces annonces sont prévues ou non prévues. Les annonces prévues sont organisées selon un calendrier connu à l’avance par tous les opérateurs. Ces annonces telles que les statistiques d'activité, d’exportation ou de sentiments, sont publiées une fois par mois par des agences spécialisées telles que Bloomberg. La diffusion d’une statistique économique ou financière est toujours précédée par la publication de sa prévision calculée comme la médiane de toutes les prévisions individuelles fournies par les agents. Cette médiane est un proxy de la vision commune des opérateurs et aide à la construction d'une représentation collective de l'environnement économique. Le premier chapitre de ma thèse a pour objectif d'analyser l'hétérogénéité dans la prévision des annonces macroéconomiques est testée grâce à des données mensuelles de prévisions issues d'enquêtes conduites par Bloomberg, sur une série d'indicateurs macroéconomiques. S’ensuit alors une deuxième problématique. Quels sont aux yeux des investisseurs, les critères qui permettent de considérer qu’une annonce est plus importante qu’une autre ? L’analyse du processus par lequel une information est incorporée dans les cours, nous a éclairés sur l’existence d’une forte rotation dans les statistiques considérées comme importantes (Market Mover indicators). Le deuxième chapitre tente donc de répondre à cette problématique. Dans un dernier chapitre je m’interroge sur la dynamique des prix post-publications d’annonces macroéconomiques et financières. Des connections sont réalisées entre les Jumps sur les cours des actifs et les annonces macroéconomiques, financières mais aussi imprévues. / Financial markets are subjected daily to the diffusion of economic indicators and their forecasts by public institutions and even private ones. These annoncements can be scheduled or unscheduled. The scheduled announcements are organized according to a specific calendar and known in advance by all operators. These news such as activity indicators, credit, export or sentiments’ surveys, are published monthly or quarterly by specialized agencies to all operators in real time. Our thesis contributes to diferent literatures and aims to thoroughly analyze the three phases of the diffusion process of new information on financial markets : anticipation of the announcement before its publication, interest that arouse its publication and impact of its publication on market dynamics. The aim of the first chapter is to investigate heterogeneity in macroeconomic news forecasts using disaggregate data of monthly expectation surveys conducted by Bloomberg on macroeconomic indicators from January 1999 to February 2013. The second chapter examines the impact of surprises associated with monthly macroeconomic news releases on Treasury-bond returns, by paying particular attention to the moment at which the information is published in the month. In the third chapter we examine the intraday effects of surprises from scheduled and unscheduled announcements on six major exchange rate returns (jumps) using an extension of the standard Tobit model with heteroskedastic and asymmetric errors.
|
8 |
Estimation of State Space Models and Stochastic VolatilityMiller Lira, Shirley 09 1900 (has links)
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique.
Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières.
Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés.
Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière. / My thesis consists of three chapters related to the estimation of state space models and stochastic volatility models.
In the first chapter we develop a computationally efficient procedure for state smoothing in Gaussian linear state space models. We show how to exploit the special structure of state-space models to draw latent states efficiently. We analyze the computational efficiency of Kalman-filter-based methods, the Cholesky Factor Algorithm, and our new method using counts of operations and computational experiments. We show that for many important cases, our method is most efficient. Gains are particularly large for cases where the dimension of observed variables is large or where one makes repeated draws of states for the same parameter values. We apply our method to a multivariate Poisson model with time-varying intensities, which we use to analyze financial market transaction count data.
In the second chapter, we propose a new technique for the analysis of multivariate stochastic volatility models, based on efficient draws of volatility from its conditional posterior distribution. It applies to models with several kinds of cross-sectional dependence. Full VAR coefficient and covariance matrices give cross-sectional volatility dependence. Mean factor structure allows conditional correlations, given states, to vary in time. The conditional return distribution features Student's t marginals, with asset-specific degrees of freedom, and copulas describing cross-sectional dependence. We draw volatility as a block in the time dimension and one-at-a-time in the cross-section. Following McCausland(2012), we use close approximations of the conditional posterior distributions of volatility blocks as Metropolis-Hastings proposal distributions. We illustrate using daily return data for ten currencies. We report results for univariate stochastic volatility models and two multivariate models.
In the third chapter, we evaluate the information contributed by (variations of) realized volatility to the estimation and forecasting of volatility when prices are measured with and without error using a stochastic volatility model. We consider the viewpoint of an investor for whom volatility is an unknown latent variable and realized volatility is a sample quantity which contains information about it. We use Bayesian Markov Chain Monte Carlo (MCMC) methods to estimate the models, which allow the formulation of the posterior densities of in-sample volatilities, and the predictive densities of future volatilities. We then compare the volatility forecasts and hit rates from predictions that use and do not use the information contained in realized volatility. This approach is in contrast with most of the empirical realized volatility literature which most often documents the ability of realized volatility to forecast itself. Our empirical applications use daily index returns and foreign exchange during the 2008-2009 financial crisis.
|
Page generated in 0.0624 seconds