• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical and Statistical Analysis of Functional Process Variables for Process Control in Semiconductor Manufacturing

Zhang, Xi 16 July 2009 (has links)
The research aims at modeling and analyzing the interactions among functional process variables (FPVs) for process control in semiconductor manufacturing. Interaction is a universal phenomenon and different interaction patterns among system components might characterize the system conditions. To monitor and control the system, process variables are normally collected for observation which could vary with time and present in a functional form. These FPVs interact with each other and contain rich information regarding the process conditions. As an example in one of the semiconductor manufacturing processes, changes of interactions among FPVs like temperature and coefficient of friction (COF) might characterize different process conditions. This dissertation systematically developed a methodology to study interaction among FPVs through statistical and physical modeling. Three main topics are discussed in this dissertation: (1) Interaction patterns of FPVs under varying process conditions are studied both through experiments and statistical approaches. A method based on functional canonical correlation analysis (FCCA) is employed to extract the interaction patterns between FPVs and experiments of wafer polishing processes are conducted to verify the patterns of FPVs under varying process conditions. (2) Interaction among FPVs is further studied based on physics for process condition diagnosis. A mathematical model based on nonlinear dynamics is developed to study the strength of interaction and their directionalities, and advanced statistical control charts followed by this nonlinear dynamics model are established for process monitoring. (3) Complex interaction structures among multiple FPVs are analyzed based on nonlinear dynamics for a better understanding of process mechanism. An approach with extended nonlinear dynamics model is proposed to characterize process conditions, and combined engineering knowledge, complex interaction structure patterns are concluded accordingly for interpretation of process mechanism. The main contribution of this dissertation is to propose a novel methodology based on nonlinear dynamics, which could investigate interactions between components of systems and provide physical understanding of process mechanism for process monitoring and diagnosis. Through studies on interaction among FPVs in semiconductor manufacturing, this research provides guidance for improvement of manufacturing processes. Not limited to manufacturing, the developed methodology can be applied to other areas such as healthcare delivery.
2

Contribution à l'analyse des effets macroscopiques de l'interaction structure-sol-structure par modélisation simplifiée en éléments spectraux / Contribution to the analysis of macroscopic effects of Structure-Soil-Structure interaction through simplified modeling by spectral elements method.

Iqbal, Javed 08 December 2014 (has links)
Ce travail de thèse présente une contribution à l'analyse des effets dynamiques des interactions sol-structure sur le mouvement sismique du sol et des bâtiments. Il repose essentiellement sur une approche numérique qui utilise la méthode des éléments spectraux et une représentation simplifiée des bâtiments par des modèles « par blocs » dont la réponse est ajustée par comparaison à plusieurs jeux de données expérimentales. L'objectif principal est de définir un cadre permettant une modélisation réaliste des effets macroscopiques d'interactions sol-structure et structure-sol-structure dans le calcul du mouvement du sol et des bâtiments. Après une présentation du cadre théorique de l'interaction sol-structure et des principales méthodes utilisées pour sa modélisation, divers exemples, comprenant le site Euroseistest / Volvi (Grèce), les tours de l'Ile Verte à Grenoble et Anchorage (Alaska), sont étudiés en détail pour identifier les difficultés de modélisation et proposer une procédure d'ajustement des paramètres des modèles par blocs au comportement réel des structures. Cela inclue une discussion sur les caractéristiques dynamiques les plus importantes à reproduire (fréquence de résonance, amortissement et mouvement de bascule) et sur la façon d'adapter les propriétés fictives des modèles par blocs afin de reproduire le comportement dynamique de structures dont les propriétés mécaniques varient fortement sur des échelles spatiales beaucoup plus faibles. Une attention particulière est consacrée à la modélisation par blocs de bâtiments ayant des propriétés dynamiques non-isotropes et des réponses mêlant flexion et cisaillement (de type « poutre de Timoshenko ») via l'introduction de propriétés hétérogènes au sein des éléments spectraux, et sans modification de la section géométrique globale. Ce travail comprend également une comparaison détaillée des différences entre modèles 2D et 3D et une discussion de leur origine physique : pour des bâtiments ayant des rapports d'aspect (longueur sur largeur) inférieurs à 6, les modèles 2D sont non-conservatifs, dans le sens où ils surestiment de façon significative l'amortissement et le mouvement de bascule. Cette thèse comprend également une grande partie sur les effets de l'interaction de structure à structure au travers du sol. De nombreuses situations sont étudiées, depuis le cas de 2 bâtiments à 2D ou 3D jusqu'au cas de zones densément urbanisées en 3D, avec divers types d'excitations (« pull-out », source superficielle ou profonde). Les effets de la distance inter-bâtiments sont étudiés dans diverses gammes de fréquence. La tendance générale obtenue est une diminution du mouvement du sol et des bâtiments autour de la fréquence de résonance fondamentale et une augmentation autour de la fréquence du premier harmonique. Des effets significatifs de réduction de la sollicitation sismique apparente sont obtenus en raison de l'effet de bouclier joué par les bâtiments vis à vis des ondes de surface. / This work is a contribution to investigations on the effects of dynamic soil-structure interaction on the seismic motion of both ground surface and buildings. It is based mainly on a numerical approach using the spectral element method and a simplified representation of buildings with "block models", calibrated however on a comparison with various sets of instrumental data. One of the main goals is to set the frame for a relevant macroscopic modeling of SSI and SSSI effects on ground and structural dynamic response. After a presentation of the background theoretical framework of soil-structure interaction and the main modeling approaches, various examples from Euroseistest / Volvi (Greece), Grenoble Ile Verte towers (France) and Anchorage (Alaska) are investigated in detail to identify the main modeling issues and to propose a procedure to best tune the model and its parameters to the actual behavior. It includes a discussion on the main relevant macroscopic dynamic characteristics to fit (frequency, damping and rocking ratio), and on the way to use "block models", i.e., models consisting of blocks full of fictitious material, to satisfactorily reproduce the macroscopic response of actual buildings having highly variable slenderness ratios, with frames or shear walls. A special attention is devoted to the "block-modeling" of buildings with non-symmetrical dynamic properties and Timoshenko beam like behavior, through the introduction of material heterogeneities within the spectral elements of block models, while keeping unchanged the geometrical cross-section. It also includes a thorough comparison on the major differences between 2D and 3D models and their physical origins: for long buildings with aspect ratios (length over width ratio) lower than 6, 2D models are shown un-conservative, as they tend to significantly overestimate the damping and rocking ratios. This work also includes a large part on the effects of Structure-to-Structure interaction through the soil. Various cases are considered, from the 2 building case in 2D and 3D geometries to an idealized, densely urbanized 3D area, with various types of excitations (pull-out, surface or deep source). Effects of inter-building distance and frequencies are investigated. The general trend is a reduction of the ground and building motion around the fundamental frequency, with however opposite effects for the first higher mode. The reduction effects are found of particular importance because of the shielding effects of building clusters for surface waves.
3

A multi time-step partitioned approach for the coupling of SPH and FE methods for nonlinear FSI problems / Un méthode de couplage multi-échelle partitionée pour des problèmes d'intéraction fluide-structure non-linéaires en utilisant les méthodes SPH et des EF

Nunez Ramirez, Jorge 29 May 2017 (has links)
Dans le cadre de ce travail, une technique non-intrusive est proposée pour coupler la méthode Smoothed Particle Hydrodynamics (SPH) à la méthode des Eléments Finis afin de résoudre numériquement des problèmes dynamiques et non-linéaires d’interaction fluide-structure en permettant l’utilisation des pas de temps différents dans les deux domaines de calcul (fluide et solide). Ces développements sont motivés par le besoin de simuler numériquement des phénomènes rapides et très non-linéaires qui prennent en compte des impacts en se servant des intégrateurs temporels explicites dans chaque sous-domaine de calcul (Newmark explicite pour le solide et Runge-Kutta 2 pour le fluide). De ce fait, le pas de temps de stabilité est limité par des caractéristiques intrinsèques au modèle numérique du phénomène étudié et en conséquence, il devient important de pouvoir intégrer chaque sous-domaine numérique avec un pas de temps proche de son pas de temps de stabilité. Pour permettre d’utiliser un pas de temps proche du pas de temps de stabilité pour chaque sous-domaine, des méthodes de décomposition de domaines dual-Schur sont implémentées et validées pour des cas en 1-D, 2-D, et 3-D. Des simulations numériques d’impacts de cailloux sur des aubes des turbines hydrauliques sont aussi effectue´es afin de prédire le dommage que cet évènement peut engendrer. / A method to couple smoothed particle hydrodynamics and finite elements methods for nonlinear transient fluid–structure interaction simulations by adopting different time-steps depending on the fluid or solid sub-domains is proposed. These developments were motivated by the need to simulate highly non-linear and sudden phenomena that take into acount solid impacts and hence require the use of explicit time integrators on both sub-domains (explicit Newmark for the solid and Runge–Kutta 2 for the fluid). However, due to critical time-step required for the stability of the explicit time integrators in, it becomes important to be able to integrate each sub-domain with a different time-step while respecting the features that a previously developed mono time-step coupling algorithm offered. For this matter, a dual-Schur decomposition method originally proposed for structural dynamics was considered, allowing to couple time integrators of the Newmark family with different time-steps with the use of Lagrange multipliers.
4

Techniques de modélisation pour la conception des bâtiments parasismiques en tenant compte de l’interaction sol-structure / Modeling techniques for building design considering soil-structure interaction

Fares, Reine 16 November 2018 (has links)
La conception des bâtiments selon le code sismique européen ne prend pas en compte les effets de l'interaction sol-structure (ISS). L'objectif de cette recherche est de proposer une technique de modélisation pour prendre en compte l’ISS et l'interaction structure-sol-structure (ISSS). L'approche de propagation unidirectionnelle d’une onde à trois composantes (1D-3C) est adoptée pour résoudre la réponse dynamique du sol. La technique de modélisation de propagation unidirectionnelle d'une onde à trois composantes est étendue pour des analyses d'ISS et ISSS. Un sol tridimensionnel (3D) est modélisé jusqu'à une profondeur fixée, où la réponse du sol est influencée par l’ISS et l’ISSS, et un modèle de sol 1-D est adopté pour les couches de sol plus profondes, jusqu'à l'interface sol-substrat. Le profil de sol en T est assemblé avec une ou plusieurs structures 3-D de type poteaux-poutres, à l’aide d’un modèle par éléments finis, pour prendre en compte, respectivement, l’ISS et l’ISSS dans la conception de bâtiments. La technique de modélisation 1DT-3C proposée est utilisée pour étudier les effets d’ISS et analyser l'influence d'un bâtiment proche (l'analyse d’ISSS), dans la réponse sismique des structures poteaux-poutres. Une analyse paramétrique de la réponse sismique des bâtiments en béton armé est développée et discutée pour identifier les paramètres clé du phénomène d’ISS, influençant la réponse structurelle, à introduire dans la conception de bâtiments résistants aux séismes. La variation de l'accélération maximale en haut du bâtiment avec le rapport de fréquence bâtiment / sol est tracée pour plusieurs bâtiments, chargés par un mouvement à bande étroite, excitant leur fréquence fondamentale. Dans le cas de sols et de structures à comportement linéaire, une tendance similaire est obtenue pour différents bâtiments. Cela suggère l'introduction d'un coefficient correcteur du spectre de réponse de dimensionnement pour prendre en compte l’ISS. L'analyse paramétrique est répétée en introduisant l'effet de la non-linéarité du sol et du béton armé. La réponse sismique d'un bâtiment en béton armé est estimée en tenant compte de l'effet d'un bâtiment voisin, pour un sol et des structures à comportement linéaire, dans les deux cas de charge sismique à bande étroite excitant la fréquence fondamentale du bâtiment cible et du bâtiment voisin. Cette approche permet une analyse efficace de l'interaction structure-sol-structure pour la pratique de l'ingénierie afin d'inspirer la conception d'outils pour la réduction du risque sismique et l'organisation urbaine. / Building design according to European seismic code does not consider the effects of soil-structure interaction (SSI). The objective of this research is to propose a modeling technique for SSI and Structure-Soil-Structure Interaction (SSSI) analysis. The one-directional three-component (1D-3C) wave propagation approach is adopted to solve the dynamic soil response. The one-directional three-component wave propagation model is extended for SSI and SSSI analysis. A three-dimensional (3-D) soil is modeled until a fixed depth, where the soil response is influenced by SSI and SSSI, and a 1-D soil model is adopted for deeper soil layers until the soil-bedrock interface. The T-soil profile is assembled with one or more 3-D frame structures, in a finite element scheme, to consider, respectively, SSI and SSSI in building design. The proposed 1DT-3C modeling technique is used to investigate SSI effects and to analyze the influence of a nearby building (SSSI analysis), in the seismic response of frame structures. A parametric analysis of the seismic response of reinforced concrete (RC) buildings is developed and discussed to identify the key parameters of SSI phenomenon, influencing the structural response, to be introduced in earthquake resistant building design. The variation of peak acceleration at the building top with the building to soil frequency ratio is plotted for several buildings, loaded by a narrow-band motion exciting their fundamental frequency. In the case of linear behaving soil and structure, a similar trend is obtained for different buildings. This suggests the introduction of a corrective coefficient of the design response spectrum to take into account SSI. The parametric analysis is repeated introducing the effect of nonlinear behaving soil and RC. The seismic response of a RC building is estimated taking into account the effect of a nearby building, for linear behaving soil and structures, in both cases of narrow-band seismic loading exciting the fundamental frequency of the target and nearby building. This approach allows an easy analysis of structure-soil-structure interaction for engineering practice to inspire the design of seismic risk mitigation tools and urban organization.

Page generated in 0.1536 seconds