Spelling suggestions: "subject:"interactions protéines""
101 |
Protein-protein interactions involved in the signal transduction pathway of hPTP1EClark, Kristopher 07 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal. / Protein-protein interactions are an integral component of signal transduction pathways. The interactions are mediated by modular domains which are present within the structure of the signalling molecule. These domains include PDZ, SH2, SH3, WW, PTB and LIM domains. hPTP1E is a protein-tyrosine phosphatase which contains within its primary structure a region with homology to Band 4.1 proteins, five PDZ domains and a catalytic domain. While the function of this PTPase remains unknown, the structure of hPTP1E suggest it may recruit several proteins into a multiprotein complex. In order to understand the role of hPTP1E, the protein interactions within its signalling cascade were examined. hPTP1E interacts with ZRP-1 and GEF-5.1 via its second PDZ domain and tuberin via its fourth PDZ domain in the yeast two-hybrid system. In order to characterize these proteins and their interactions, antibodies were generated against ZRP-1 and GEF-5.1. The antibodies which detected the antigen expressed in bacteria were purified by affinity chromatography. The antibodies raised against ZRP-1 and hPTP1E detected proteins of appropriate molecular weights in total cell extracts. HPTP1E is ubiquitously expressed whereas ZRP-1 is restricted to HeLa and MCF-7 cells among the cells tested. Unfortunately, antibodies against GEF-5.1 did not detect a protein of the predicted molecular weight in any of the cell extracts. Immunoprecipitation of hPTP1E fi-om cells overexpressing regions of ZRP-1 and tuberin with a hemaglutinin tag demonstrated the presence of an interaction between the phosphatase and tuberin in vivo. However, ZRP-1 and hPTP1E did not interact under these experimental conditions. Confirmation of the yeast two-hybrid results provides further support for a possible role of hPTP1E in the regulation of endocytosis. Additional molecules involved in the signalling pathways involving hPTP1E were identified by interaction trap. In one study, the proline rich amino terminus of ZRP-1 interacted with several clones encoding a segment of hCDC47 and NtZRP-p33, a clone containing an SH3 domain. The significance of these findings is unknown. HCDC47 is a minichromosome maintenance protein wich regulate DNA replication. Further, a clone called KIAA0769 containing the sequence of NtZRP-p33 depicts the typical structure for a scaffolding protein. Another yeast-two hybrid cDNA library screening using the CDC25 homology domain of GEF-5.1 did not detect an interaction with any GTPase but with 14-3-3E. 14-3-3 proteins are regulatory molecules which interact with various types of proteins by means of a phosphorylated serine residue. Mutational analysis demonstrated that the interaction is dependent on the second serine residue within the consensus sequence RSLSQG found in GEF-5.1. The primary structure of the open reading frame of GEF-5.1 was analyzed using profilescan. The software predicted the presence of several domains including a cNMP binding domain, a LTE domain, a PDZ domain, a rasassociated domain and a CDC25 homology domain. A family of guanidine nucleotide exchange factors may exist as clones KIAA0313 and T14G10 have the same structure. These results indicate a role for GEF-5.1 in Ras signalling pathways. Further, its activity may be regulated by the binding of cNMP molecules and 14-3-3E. The identification of ZRP-1 and GEF-5.1 interacting proteins as well as the analysis of the primary structure of GEF-5.1 have provided additional information about the function of hPTP1E. This cytoplasmic phosphatase may be involved in the regulation of processes such as transcription, DNA replication and. Further, an interaction between tuberin and hPTP1E suggests a role for this PTPase in the regulation of endocytosis. / La phosphorylation des protéines est une modification post-traductionelle fréquemment employée pour moduler la transmission des signaux intracellulaires. Il est nécessaire qu'un équilibre du niveau de phosphorylation soit maintenu pour le fonctionnement normal de la cellule sinon des maladies comme le cancer peuvent apparaître. Les enzymes responsables de la phosphorylation des protéines sont les protéines kinases tandis que les protéines phosphatases enlèvent les groupements phosphate. Les résidus phosphorylés dans les protéines sont certains résidus sérines, thréonines et/ou tyrosines. Les différentes enzymes sont classées en deux familles selon leur spécificité. Les protéine-tyrosine phosphatases (PTPase) sont elles-même regroupées dans deux familles selon leur localisation intracellulaire: les PTPases de type récepteur et les phosphatases cytoplasmiques. La structure des phosphatases de type récepteur inclus un domaine extracellulaire, un domaine transmembranaire et un (ou deux) domaine(s) catalytique(s). Les PTPases cytoplasmiques contiennent un domaine catalytique unique et généralement un/ ou des domaine(s) responsable(s) de leur localisation intracellulaire ou impliqué(s) dans des interactions protéine-protéine. Dans notre laboratoire, une phosphatase cytoplasmique dénommée liPTP1E par nous (et PTPL1, PTPBAS, FAP par d'autres) a été isolée. En plus de son domaine catalytique, cette protéine-tyrosine phosphatase contient 1 domaine de type "Band 4.1" qui est impliqué dans la localisation de la protéine à la membrane cellulaire via une interaction avec le cytoskelette, et 5 domaines PDZ. Ces domaines PDZ sont en général impliqués dans les interactions protéineprotéine. Plusieurs études récentes ont tenté de définir la fonction de hPTP1E. Sato et ses collègues ont isolé hPTP1E lors d'un criblage d'une librairie d'ADNc en utilisant le système des deux-hybrides dans la levure avec la partie cytoplasmique du récepteur Fas, comme appât. Ils ont aussi démontré que hPTP1E peut inhiber l'effet apoptotique de Fas. L'apoptose des cellules cibles qui est induit par les lymphocytes T cytotoxiques utiliserait le système Fas. De plus, Fas pourrait être associé à des maladies auto-immunes. En plus, hPTP1E pourrait jouer un rôle dans l'apparition de cellules resistantes aux effets de Fas tel que retrouvées dans les sarcomes de Kaposi chez les sidéens. Malgré des données convaincantes, il reste quand même des doutes quant à l'importance de hPTP1E dans ces maladies. Ainsi une étude publiée n'a pu démontrer une interaction entre les homologues de Fas et hPTP1E chez la souris. Depuis d'autres groupes étudiant les interactions de hPTP1E ont découvert plusieurs protéines qui interagissent avec celle-ci. La première, PARG, est membre de la famille des Rho-GAP, des protéines impliquées dans l'activation des GTPases de type Rho. L'interaction aurait lieu avec le 4ième domaine PDZ de hPTP1E. De plus, le domaine LEVI de RIL interagirait avec hPTP1E via ses 2ième et 4ième domaines PDZ. La fonction biologique de ces interactions n'a toutefois pas été déterminée à ce jour. Pour caractériser la fonction biologique de hPTP1E, nous avons utilisé le système des deux-hybrides de la levure pour identifier des protéines qui interagiraient avec les domaines PDZ de hPTP1E. J'ai ainsi identifié deux protéines nommés ZRP-1 et GEF-5.1, qui se lient à hPTP1E. ZRP-1 possède une structure semblable à celle de zyxin.Ces deux dernières protéines contiennent une région amino-terminale riche en résidus proline et 3 domaines de type LEM à l'extrémité carboxyl terminale. GEF-5.1, d'autre part démontre une homologie marquée aux GEFs de la famille CDC25 impliquées dans l'activation des GTPases de la famille Ras. Des anticorps ont été générés contre ZRP-1, GEF-5.1 et hPTP1E afin de fournir les outils nécessaires pour mieux caractériser ces différentes protéines. Ainsi, j'ai exprimé et purifié le troisième domaine LIM de ZRP-1 ainsi que le domaine PDZ de GEF-5.1, sous forme de protéines de fusion avec la glutathioneS-transferase (GST). Ces protéines ont servis d'antigène pour générer des anticorps chez le lapin. Des anticorps dirigés contre le deuxième domaine PDZ de hPTP1E étaient déja disponibles dans le laboratoire. Ces anticorps ont été purifiés sur une colonne d'affinité GST. Les anticorps anti-ZRP-1 et anti-hPTP1E détectent tous les deux des protéines du poids moléculaire attendu. HPTP1E est exprimé d'une facon ubiquitaire tandis que l'expression de ZRP-1 est plus restrainte parmi les cellules testées. Toutefois, les immunoglobulines dirigées contre GEF-5.1 ne détectent aucune protéine du poids moléculaire attendu dans un extrait cellulaire brut. Parallèlement, d'autres membres du laboratoire ont démontré une interaction entre la tuberine, le produit du gène TSC2, un oncogène impliqué dans la sclérose tubéreuse, et le quatrième domaine PDZ de hPTP1E. Afin de caractériser ces interactions in vivo, des immunoprécipitations de hPTP1E à partir de cellules dans lesquelles une région de ZRP-1 et/ou de la tuberine étaient surexprimé ont été conduites. Sous les conditions expérimentales utilisées, ZRP-1 n'a pas co-immunoprécipité avec hPTP1E. Cependant une interaction avec la tuberine a été détectée utilisant cette stratégie suggérant que HPTP1E pourrait jouer un rôle dans la modulation de l'endocytose. La structure de ZRP-1 inclus un domaine riche en proline qui n'est pas nécessaire pour son interaction avec hPTP1E mais qui pourrait interagir avec d'autres protéines en particulier avec des protéines contenant un/ ou des domaine(s) SH3. La moitié amino-terminale de ce domaine a été utilisé pour cribler une librairie d'ADNc par le système des deux-hybrides. Un clone appelé NtZRP-p33 contenant un domaine SH3 a été identifié. La conséquence biologique de cette interaction reste toutefois a être déterminée. Cependant, NtZRP-p33 possède une structure suggérant son implication dans la signalisation intracellulaire. Un deuxième criblage de la librairie d'ADNc a été initié pour caractériser les protéines impliquées dans le mécanisme de signalisation de hPTP1E. En utilisant le domaine de GEF-5.1 homologue à CDC25, des clones correspondants à la protéine 14-3-3 ont été isolés. Les protéines 14-3-3 forment une famille de protéines qui régularisent la fonction de plusieurs protéines. Leurs interactions se font via un residu sérine qui est phosphorylé. Des mutations du domaine catalytique ont démontré que l'interaction entre 14-3-3s et GEF-5.1 est dépendante du deuxième sérine de la séquence RSLSQG qui se retrouve immédiatement du coté carboxyl terminale du domaine GEF de la protéine GEF-5.1. Ces résultats suggèrent que l'activité de GEF-5.1 pourrait être modulée par la 14-3-38. En conclusion, les résultats expérimentaux présentés dans ce mémoire indique un rôle potentiel de hPTP1E dans plusieurs fonctions cellulaires. En s'associant à la tuberine, hPTP1E pourrait régulariser l'endocytose. Aussi, cette PTPase pourrait être impliquer dans le cycle cellulaire. Ras étant un activateur de la mitose, HPTP1E pourrait moduler l'activité de Ras par voie de GEF-5.1. Ainsi, hPTP1E pourrait agir comme proto-oncogène ou un gène suppresseur des tumeurs. Zyxin est une protéine qui se retrouve près des sites membranaires en association avec le cytoskelette. Puisque la structure de ZRP-1 et zyxin est semblable, ce dernier sert de modèle pour la fonction de ZRP-1. En collaboration avec hPTP1E, ces deux protéines pourrait régulariser la structure du cytoskelette.
|
102 |
Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge”Ear, Po Hien 11 1900 (has links)
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae).
Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections.
J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6.
Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices. / Proteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle.
In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays.
I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6.
Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.
|
103 |
Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge”Ear, Po Hien 11 1900 (has links)
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae).
Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections.
J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6.
Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices. / Proteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle.
In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays.
I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6.
Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.
|
Page generated in 0.1356 seconds