• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 12
  • 3
  • Tagged with
  • 69
  • 69
  • 33
  • 16
  • 13
  • 12
  • 10
  • 10
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude des interactions protéiques entre les formes d'épissage du gène UGT1A

Collin, Pierre 19 April 2018 (has links)
L’épissage alternatif en 3’ du gène UGT1A entraîne la production d’enzymes actives, les isoformes 1 (i1), et de protéines tronquées, les isoformes 2 (i2), qui ne possèdent pas de domaine transmembranaire (TMD) et d’activité de glucuronidation, mais plutôt des propriétés modulatrices sur l’activité enzymatique des i1 via des interactions protéiques. Nous croyons que les interactions i1-i2 impliquent plusieurs domaines d’interactions et qu’ils sont différents de ceux impliqués dans l’homo-oligomérisation des i1. Des expériences de co-immunoprécipitation démontrent que les isoformes i1 dépourvues du signal peptide +/- le TMD empêchent l’homo-oligomérisation sans affecter l’interaction i1-i2. De plus, la présence de complexes de hauts poids moléculaires observée par immunobuvardages en conditions non-réductrices démontre l’implication potentielle de ponts disulfures dans la formation des complexes i1-i2, et ce via plusieurs résidus cystéines. En somme, les résultats obtenus supportent que l’interaction i1-i2 implique plusieurs domaines protéiques et qu’ils diffèrent de ceux impliqués dans les complexes i1-i1. / Alternative splicing of UDP-glucuronosyltranferase UGT1A gene results in the production of enzyme, isoforms i1 and i2. Unlike the active i1 proteins, i2 are truncated proteins which lack the transmembrane domain and glucuronic acid transferase activity, but have an inhibitory effect on UGT1A activity likely through the formation of hetero-oligomers with i1. We believe that i1-i2 interaction involves binding of more than one domain. Our results showed that i1, in the presence or absence of the transmembrane domain, without the signal peptide did not self-interact but instead interacted with i2. In addition, high molecular weight complexes were observed by immunoblotting under non-reducing conditions. It demonstrates the involvement of disulfide bonds in the formation of i1-i2 complexes. In summary, these results support that i1-i2 interactions involve multiple protein domains and they differ from those involved in homo-oligomerization of i1.
2

Sulfoprotéomique : développement analytique et rôle dans les processus d'interactions protéine / protéine / Sulfoproteomics : analytical development and involvement in protein / protein interactions processes

Parra, Julien 11 September 2014 (has links)
Le terme de sulfoprotéomique est utilisé pour désigner l’étude de la sulfatation des protéines. Bien que la sulfatation soit depuis peu considérée comme une MPT d’une importance majeure, il y a toujours peu de travaux scientifiques qui y sont consacrés en comparaison avec ce qui se fait sur la phosphorylation notamment. Ce retard s’explique notamment par la difficulté à analyser les espèces protéiques sulfatées dans les conditions classiques utilisées en protéomique, notamment par spectrométrie de masse. Ces travaux de thèse visent justement à développer des méthodes d’analyses par spectrométrie de masse dédiées à l’étude de la sulfatation des protéines, afin d’augmenter le champ des connaissances de cette MPT. Pour cela, nous avons largement utilisé le mode d’ionisation négatif, très peu, voire jamais utilisé en protéomique, avec deux techniques de fragmentation pour réaliser des spectres MS/MS, à savoir les fragmentations CID et HCD. Les résultats obtenus nous ont permis de mettre en évidence une méthode d’analyse permettant la formation d’ions spécifiques de la sulfatation et de la phosphorylation (qui sont isobariques), permettant ainsi une identification certaine de chacune des deux MPTs. Nous avons également entrepris d’étudier le rôle de la sulfatation d’un récepteur cellulaire, CXCR4, dans son interaction avec son ligand naturel, la chimiokine SDF-1/CXCL12. Cette étude a été menée par électrophorèse capillaire, et pourra constituer une base de travail solide pour des futures analyses mettant en œuvre le couplage entre l’électrophorèse capillaire et la spectrométrie de masse pour une meilleure caractérisation des complexes formés entre les partenaires protéiques. / Sulfoproteomics term designs protein sulfation studies. It appears during the 2000’s, when the interest for others Post-Translational Modifications (PTMs) than phosphorylation and glycosylation was growing up. Even though sulfation is thought to be an important PTM, a weak number of publications has emerged about it, notably if we compare with the huge quantity of phosphorylation papers. This difference is mainly due to the difficulty to correctly analyze sulfated proteins and peptides in the classical ways of proteomics, as in mass spectrometry for example. The goal of this thesis is to develop mass spectrometry methods dedicated to the characterization of sulfated species, in order to improve the knowledge of this PTM. To do that, we have mainly used negative ion mode, which is almost never used, with two fragmentations techniques for the MS/MS spectra, which are CID and HCD. Results obtained allow us to pinpoint an analytical method allowing the differentiation between sulfation and phosphorylation (they are isobaric), based on the presence of specific ion for each PTM in MS/MS. In another part of the project, we have investigated the role of sulfation in the interaction between a cellular receptor, CXCR4, and its in vivo ligand, the chemokine SDF-1/CXCL12. We used capillary electrophoresis for this work, and it could be a good basis for future analyses using capillary electrophoresis coupled with mass spectrometry, in order to have a better characterization of the observed complexes.
3

Étude de la régulation de la ribonucléase III humaine Dicer : analyse de ses partenaires d'interactions protéiques

Pépin, Geneviève 23 April 2018 (has links)
La ribonucléase III humaine Dicer est responsable de la biosynthèse des microARN et représente un pilier de la régulation génique, et donc de l’homéostasie cellulaire. Les microARN sont de petits éléments régulateurs de 19 à 24 nt qui régulent ~60% des gènes chez l’humain et sont impliqués dans la majorité des processus cellulaires. De ce fait, il n’est pas étonnant qu’il y ait, dans la majorité des cancers, une diminution globale du niveau des microARN et que, dans plusieurs cas, un changement d’expression ou de localisation de la protéine Dicer ait été noté. Malgré le rôle important que joue Dicer dans la cellule, sa régulation n’est pas très bien connue, ni même les complexes de nature protéique au sein duquel il se trouve. Pour pallier à ce manque, nous avons criblé une librairie d’ADN complémentaires par double-hybride chez la levure, ce qui nous a permis de découvrir, et de caractériser, de nouvelles protéines pouvant interagir avec Dicer. Les résultats obtenus démontrent que Dicer est stabilisé par son interaction avec la protéine résidente du réticulum endoplasmique (RE) cytoskeleton-linking endoplasmic réticulum (ER) membrane protein of 63 kDa (CLIMP-63). La protéine Dicer forme un complexe avec CLIMP-63 peu de temps après sa traduction de novo. Les protéines semblent interagir à l’intérieur du RE et mener à l’export de la protéine Dicer hors de la cellule. Durant la mitose, où les niveaux de protéines Dicer sont réduits, Dicer peut être acétylé par l’acétyl-transférase General Control of Amino-acid Synthesis 5 (GCN5), une modification qui semble stabiliser Dicer. La localisation nucléaire de Dicer peut être causée par la protéine Mitogen-activated protein kinase upstream kinase-binding inhibitory protein (MBIP), au cours d’un processus nécessitant une lysine acétylable à la position 301 du signal de localisation nucléaire de MBIP. Finalement, la cytokine (TWEAK) pourrait moduler l’activité de clivage de Dicer via une interaction directe entre les deux protéines. L’utilisation du double-hybride chez la levure a permis de jeter un éclairage nouveau sur les protéines pouvant réguler la fonction et la localisation de l’enzyme Dicer dans les cellules humaines, au-delà de sa simple activité catalytique.
4

De l'identification à la caractérisation des complexes protéiques : développement d'une plateforme bioinformatique d'analyse

Droit, Arnaud 12 April 2018 (has links)
Un des défis de l’ère post-génomique est de déterminer la fonction des protéines et plus précisément d’établir une cartographie protéomique de la cellule. Ainsi le défi de la génomique fonctionnelle et plus précisément de la protéomique est de comprendre les événements qui ont lieu au cours de la maturation des protéines. Plusieurs approches ont été décrites pour comprendre la fonction des protéines dont les interactions protéiques. Traditionnellement, les études des interactions protéiques étaient basées sur des approches ciblées ou sur des hypothèses d’interactions. Récemment, le développement des analyses à haut débit a généré une quantité impressionnante d’information. Face à l’accumulation des données, une approche uniquement expérimentale n’apparaît plus suffisante. Par conséquent, la création de méthodes bioinformatiques développant des procédures de prospection de données couplées avec des approches expérimentales permettra de prédire les interacteurs in silico. C’est dans cette optique que le laboratoire a développé son projet de recherche sur la famille des poly (ADP-ribose) polymérases (PARPs). La poly(ADP-ribosyl)ation est une modification post-traductionnelle qui consiste en l’ajout d’une chaîne d’ADP-ribose sur des protéines cibles.L’objectif principal de notre étude est de caractériser par des expériences d’immunoprécipitation le rôle dynamique de la poly(ADP-ribosyl)ation. L’identification des interacteurs des PARPs s’effectuera par spectrométrie de masse. Cette technique va générer d’importantes quantités de données et nécessitera une plate-forme d’analyse et de grandes capacités de calcul informatique. Dans ce contexte général, l’objectif de ce travail de thèse était de développer la plateforme bioinformatique d’analyse, d’implémenter les outils d’identifications des protéines, d’établir un contrôle de qualité des méthodes d’identification (spécificité/sensibilité) et enfin d’explorer le contenu des bases de connaissances. A l’aide du système mis en place au sein de la plateforme de protéomique, nous avons identifié de nouvaux interacteurs de la famille des PARPs comme par exemple RFC1, 2, 3, 4, 5. / An ambitious goal of proteomics is to elucidate the structure, interactions and functions of all proteins within cells and organisms. In the “post-genome” era, mass spectrometry (MS) has become an important method for the analysis of proteome data. One strategy to determine protein function is to identify protein–protein interactions. The rapid advances made in mass spectrometry in combination with other methods used in proteomics results in an increasing of proteomics projects. The increasing use of high-throughput and large-scale bioinformatics-based studies has generated a massive amount of data stored in a number of different databases. A challenge for bioinformatics is to explore array of information to uncover biologically relevant interactions and pathways. Thus for protein interaction studies, there is clearly a need to develop a systematic and stepwise in silico approach that can predict potential interactors or are most likely to improve our understanding of how complex biological systems work. The focus of our laboratory is the study of the activity of poly(ADP-ribose) polymerases (PARPs) and their role in the cell. Poly(ADP-ribosylation) is a post-synthetic protein modification consisting of long chains of poly(ADP-ribose) (pADPr) synthesized by PARPs at the expense of NAD+. The overall objective of this research is to extensively characterize the dynamic roles of poly(ADP-ribosyl)ation in response to cellular stresses that cause DNA damage. Our approach utilizes immunoprecipitation and affinity purification followed by mass spectrometry identification of associated proteins. One part of this thesis projet is to develop the architecture and major features of a web-based utility tool, which is designed to rationally organize protein and peptide data generated by the tandem mass spectrometry. Next, we have performed benchmarking to optimize protein identification. The system will be expanded as needed in order to make the analysis more efficient. We have also explored the public database information for protein identification data mining. Using the described pipeline, we have successfully identified several interactions of biological significance between PARP and other proteins such as RFC1, 2, 3, 4, 5.
5

The role of structural pleiotropy in the retention of protein complexes after gene duplication

Cisneros Caballero, Angel Fernando 11 December 2019 (has links)
La duplication de gènes est l’un des plus importants mécanismes évolutifs pour la génération de diversité fonctionelle. Lorsqu’un gène est dupliqué, la nouvelle copie partage toutes ses fonctions avec la copie ancestrale car elles encodent pour des protéines identiques. Donc, les deux protéines, appelées paralogues, auront le même réseau d’interactions physiques protéine-protéine. Cependant, dans le cas de la duplication des gènes qui codent des protéines qui interagissent avec elles-mêmes (homomères), la nouvelle protéine interagira aussi avec la copie ancestrale, ce qui introduit une nouvelle interaction (heteromère) (Kaltenegger and Ober, 2015; Pereira-Leal et al., 2007). Puisque ces interactions peuvent avoir des différents motifs de rétention et de fonction (Ashenberg et al., 2011; Baker et al., 2013; Boncoeur et al., 2012; Bridgham et al., 2008), il est important de mieux comprendre comment ces états sont atteints et quelles forces évolutives les favorisent. Dans ce memoire, je cible ces questions avec des simulations in silico de l’évolution des protéines suite à la duplication de gènes en travaillant avec des structures crystallographiques de haute qualité, provenant de la Protein Data Bank (Berman et al., 2000; Dey et al., 2018). Les simulations montrent que les sous-unités et interfaces partagées entraînent une forte corrélation entre les trajectoires évolutives de ces complexes. Ainsi, les simulations prédisent que la préservation de seulement les deux homomères ou seulement l’hétéromère ne devrait pas être fréquente. Toutefois, la simulation qui applique la sélection seulement sur un homomère montre que l’homomère neutre est destabilisé plus rapidement que l’hétéromère neutre. Nous avons comparé ces prédictions avec des résultats expérimentaux du réseau d’interactions protéine-protéine de la levure. Comme suggéré par les simulations, les patrons d’interactions les plus fréquents ont été la formation des trois complexes (deux homomères et un hétéromère) ou la formation de seulement un homomère. Les patrons correspondants à deux homomères sans hétéromères ou un hétéromère sans homomères sont rares. Nos résultats démontrent l’extension de l’hétéromérisation entre paralogues dans le réseau d’interactions physiques protéine-protéine de la levure, les mécanismes sous-jacents et ses implications. / Gene duplication is one of the most important evolutionary mechanisms for the generation of functional diversity. When a gene is duplicated, the new copy shares all of the ancestral copy’s functions because they encode identical proteins. Therefore, the two proteins, called paralogs, will have the same protein-protein interaction network. However, in the case of the duplication of genes encoding proteins that self-interact (homomers), the new protein will also interact with the ancestral copy, introducing a novel interaction (heteromer) (Kaltenegger and Ober, 2015; Pereira-Leal et al., 2007). As these interactions can have different retention and functional patterns (Ashenberg et al., 2011; Baker et al., 2013; Boncoeur et al., 2012; Bridgham et al., 2008), it is important to understand better how these states are reached and what evolutionary forces favor each of them. In this thesis, I approach these questions by means of in silico simulations of protein evolution after gene duplication by working with high-quality crystal structures from the Protein Data Bank (Berman et al., 2000; Dey et al., 2018). The simulations show that the shared subunits and interfaces lead to these complexes having highly correlated evolutionary trajectories. Thus, the simulations predict that the preservation of only the two homomers or only the heteromer is not likely to happen often. Nevertheless, simulating evolution with selection on only one homomer shows that the neutral homomer is destabilized faster than the neutral heteromer. We compared these predictions against experimental results from the yeast protein-protein interaction network. As suggested by the simulations, the most abundant interaction patterns were either the formation of all three complexes (two homomers and one heteromer) or the formation of only one homomer, with motifs corresponding to two homomers without a heteromer or a heteromer without homomers being rare. Our results highlight the extent of heteromerization between paralogs in the yeast protein-protein interaction network, the underlying mechanisms, and its implications
6

Design et synthèse de macrocycles pseudopeptidiques pour le développement d'inhibiteurs d'interactions protéine-protéine

Vézina-Dawod, Simon 23 April 2018 (has links)
Pour que la vie puisse exister, des milliers de protéines doivent interagir ensemble pour permettre les divers processus biochimiques essentiels que l’on retrouve au niveau cellulaire. Le dérèglement d’une seule interaction protéine-protéine peut avoir des conséquences catastrophiques sur la qualité de vie d’une personne. C’est ainsi que de nombreux programmes de recherches sont basés sur l’exploration d’une ou de plusieurs cibles protéiques impliquées dans diverses maladies. Étant donné la localisation intracellulaire des nouvelles cibles thérapeutiques ainsi que l’absence de ligands connus, le développement d’agents thérapeutiques devient de plus en plus ardu. En effet, la chimie combinatoire classique et le design rationnel ont leurs limitations et il y a un besoin évident de développer de nouvelles approches pour faire l’étude et la modulation des interactions protéine-protéine. C’est dans cet esprit que s’imbrique les suivants travaux, qui portent sur les peptoïdes comme outil moléculaire peptidomimétique. Ces oligomères de glycine N-substitutée présentent notamment des propriétés pharmacologiques avantageuses et représentent une base moléculaire de choix pour élaborer de nouvelles méthodologies de criblage à haut débit. En passant par le développement de nouvelles approches de synthèse sur support solide, jusqu’à l’évaluation de la pénétration cellulaire de peptoïdes macrocycliques, le suivant mémoire devrait être lu comme un préambule à l’utilisation des peptoïdes en chimie combinatoire pour la découverte d’inhibiteurs ou de modulateurs d’interactions protéine-protéine.
7

Cartographie des complexes multiprotéiques humains suite à la modification ciblée du génome

Loehr, Jérémy 24 April 2018 (has links)
La purification par affinité couplée à l’analyse par spectrométrie de masse (AP-MS) est une méthode de choix pour l’étude des interactions protéines-protéines chez les cellules humaines. Par contre, cette technique est sensible aux perturbations causées par la surexpression ectopique des protéines cibles. Des effets anormaux, tels que la formation d’agrégats et la délocalisation des protéines cibles, peuvent mener à des conclusions erronées. Il est donc important de reproduire le plus précisément possible les niveaux physiologiques normaux des protéines à l’étude. Les travaux présentés dans ce mémoire décrivent le développement d’un système robuste et rapide couplant l’édition du génome et la protéomique permettant l’isolation de complexes protéiques natifs exprimés à des niveaux quasi physiologiques. L’approche a servie de tremplin afin d’atteindre l’objectif ultime qui est de caractériser les protéines exprimées à partir de leur contexte génomique naturel. À l’aide des outils d’édition génomique, nous avons introduit de façon ciblée au locus AAVS1 une cassette permettant l’expression de protéines d’intérêt étiquetées avec une séquence permettant la purification par affinité. Ainsi, nous avons purifié de nombreuses holoenzymes impliquées dans la réparation de l’ADN et la modification de la chromatine. Nous avons identifié de nouvelles sous-unités et interactions au sein de complexes déjà bien caractérisés et rapportons l’isolation de MCM8/9, soulignant ainsi l’efficacité et la robustesse de notre approche. La technique présentée dans ce mémoire améliore et simplifie l’exploration des interactions protéiques ainsi que l’étude de leur activité biochimique, structurelle et fonctionnelle. / Conventional affinity purification followed by mass spectrometry (AP-MS) analysis is a broadly applicable method to decipher molecular interaction networks and infer protein function. However, it is sensitive to perturbations induced by ectopically overexpressed target proteins and does not reflect multilevel physiological regulation in response to diverse stimuli. Here, we developed an interface between genome editing and proteomics to isolate native protein complexes produced from their natural genomic contexts. We used CRISPR/Cas9 and ZFNs to insert cDNA of interest in the endogenous genomic safe harbor locus AAVS1 and purified several DNA repair and chromatin modifying holoenzymes to near homogeneity. We uncovered novel subunits and interactions amongst well-characterized complexes and report the isolation of MCM8/9, highlighting the efficiency and robustness of the approach. These methods improve and simplify both small and large-scale explorations of protein interactions, as well as the study of biochemical activities and structure-function relationships.
8

Conception d'une banque de nonapeptides exprimés constitutivement en cellules de mammifères pour l'étude in vivo d'interactions protéine-protéine

Courtemanche-Asselin, Philippe January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
9

Utilisation de pertubations environnementales et génétiques du réseau d'interactions protéine-protéine pour disséquer des processus cellulaires

Rochette, Samuel 20 April 2018 (has links)
Les protéines sont les machines moléculaires permettant à la cellule d’accomplir des fonctions biologiques. Pour accomplir ces fonctions, les protéines interagissent souvent entre elles de manière réversible et régulable, ce qui permet à la cellule de s’adapter rapidement à un environnement souvent instable en modulant ces interactions. Par conséquent, l’étude de la dynamique des interactions protéine-protéine est essentielle pour comprendre comment les cellules s’adaptent à diverses perturbations. Les deux chapitres de ce mémoire illustrent respectivement le développement d’une méthode pour identifier et quantifier des modulations d’interactions protéine-protéine en réponse à des perturbations environnementales et comment ces interactions peuvent être utilisées pour disséquer le réseau de régulation d’une protéine phosphatase, la calcineurine, à l’aide de perturbations génétiques. Ensemble, ces deux chapitres illustrent comment l’utilisation d’approches de perturbation du réseau d’interactions protéine-protéine permet de disséquer des processus cellulaires complexes. / Proteins are the molecular machines allowing the cell to accomplish a myriad of biological functions. To do so, proteins physically interact with each other in a reversible and tunable way, providing the cell a mechanism to quickly adapt to a changing environment. Thus, studying the dynamics of protein-protein interactions is key in understanding how cells adapt to various perturbations. The chapters included in this thesis illustrate the development of a method to identify and quantify changes in protein-protein interactions in response to environmental perturbations and how protein-protein interactions can be used as reporters to dissect the regulatory network of a protein phosphatase, calcineurin, using a network perturbation approach. Together, these two chapters illustrate the utility of network perturbation approaches to dissect complex cellular processes.
10

Étude des protéines non-structurales d'un phage infectant Streptococcus thermophilus

Morin-Pelchat, Rachel 27 January 2024 (has links)
Streptococcus thermophilus est la seconde bactérie lactique la plus utilisée en transformation laitière. Comme toutes les bactéries, elle peut être infectée par des virus appelés bactériophages ou phages. Les phages représentent un risque significatif en transformation laitière puisqu'ils sont ubiquitaires et peuvent mener à des produits fermentés de qualité inférieure. L'étude de la biologie des phages lactiques et de leurs mécanismes de réplication est nécessaire à la prévention et au contrôle de leur prolifération dans les procédés industriels. En général, les gènes viraux qui sont exprimés dès le début de l'infection sont les plus susceptibles d'encoder des protéines qui interagissent avec des composantes de la bactérie. Chez le phage 2972, plus de la moitié de ces gènes dits précoces n'ont pas de fonction connue. Le principal objectif de cette maîtrise était donc de débuter la caractérisation des protéines virales encodées par certains de ces gènes. Puisque la nature du ou des partenaires d'interaction d'une protéine est souvent directement liée à la fonction de cette dernière, nous avons travaillé au développement de méthodes servant à investiguer les interactions protéine-protéine entre le phage 2972 et sa souche hôte S. thermophilus DGCC7710. Les méthodes adaptées sont basées sur la purification d'affinité avec les étiquettes de type Strep-III® ou s'inspirent de la méthode du BioID. Pour la réalisation de certaines approches, le phage 2972 a dû être modifié génétiquement à l'aide du système CRISPR-Cas de type II-A naturellement présent chez sa bactérie hôte. La caractérisation de quelques-uns de ces phages modifiés génétiquement nous a permis de vérifier ou de formuler des hypothèses qui concernent les relations phage-hôte et la résistance aux phages chez S. thermophilus. L'extraction du protéome bactérien est une étape importante dans l'étude des interactions protéine-protéine. La lyse de notre bactérie modèle, soit DGCC7710, a représenté un défi inattendu dans le développement de notre méthode. En effet, cette bactérie à Gram positif s'est avérée résistante à plusieurs techniques standard de lyse. Toutefois, nous avons démontré que les endolysines, des enzymes utilisées par les phages pour lyser la bactérie en fin d'infection, peuvent être purifiées et utilisées pour la lyse de la souche DGCC7710. Finalement, nous avons travaillé à résoudre la structure de différentes protéines de fonction inconnue du phage 2972 par cristallographie à rayons X. Bien que la structure d'aucune des protéines à l'étude n'ait encore été résolue, nos essais laissent croire qu'une protéine précoce de 2972 interagit avec des acides nucléiques. / Streptococcus thermophilus is one of the most widely used bacterium in the dairy transformation industry. This bacterium is primarily used in the production of yogurt and speciality cheeses such as mozzarella. Like all bacteria, strains of S. thermophilus can be infected by bacterial viruses commonly known as bacteriophages or phages. Phages are ubiquitous and represent a significant risk for the dairy industry as they can greatly impact the quality of fermented dairy products. The study of phage biology is crucial for the development of efficient phage control methods in dairy factories. In general, early expressed phage genes encode viral proteins that are the most likely to interact with host molecules. More than half of such early expressed genes encode proteins of unknown function in lactic phage 2972. The main objective of this thesis was to investigate the function of some of these viral proteins. Because the nature of the binding partner of a given protein often reflects its function, we are developing methods based on affinity purification for the study of protein-protein interactions between the phage 2972 and its host S. thermophilus DGCC7710. Our methods are based on affinity purification with Strep-III® tags or inspired from BioID. In order to achieve some of our objectives, we genetically modified the genome of phage 2972 using the endogenous type II-A CRISPR-Cas system of DGCC7710. The characterization of some of these genetically modified phages gave us insights on phage-host relationships and phage resistance in S. thermophilus. In developing our methods, the proteome extraction of S. thermophilus cells were surprisingly challenging. Indeed, this Gram-positive bacterium was resistant to many standard lysis techniques. Here, we show that purified phage endolysins are very efficient in lysing the strain DGCC7710. Endolysins are phage enzymes that lyse their bacterial host at the end of the phage lytic cycle. Finally, we worked on solving the structure of different proteins of unknown function encoded in the genome of phage 2972 by X-ray crystallography. While we have yet to solve any structure, we observed that one of the early-expressed protein of phage 2972 interacts with nucleic acids.

Page generated in 0.1718 seconds