Spelling suggestions: "subject:"cmutation (biologie)"" "subject:"cmutation (debiologie)""
1 |
Structuration des génomes par sélection indirecte de la variabilité mutationnelle une approche de modélisation et de simulation /Knibbe, Carole Fayard, Jean-Michel. Beslon, Guillaume. January 2007 (has links)
Thèse doctorat : Approches Mathématiques et Informatiques du Vivant : Villeurbanne, INSA : 2006. / Titre provenant de l'écran-titre. Bibliogr. p. 147-167.
|
2 |
Identification des mutations dans le gène NF1 responsable de la maladie de Von Recklinghausen chez les patients de la clinique de neurofibromatose du Centre universitaire de santé de l'Estrie (CUSE)Rakotoson, Dieudonné Jocelyn. January 1998 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 1998. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
3 |
Identification and characterization of neurofibromatosis type 1 (NF1) gene mutationsFang, Li Juan. January 2000 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 2000. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
4 |
Evaluation et optimisation de stratégies de correction géniqueLeclerc, Xavier Kichler, Antoine. January 2008 (has links) (PDF)
Thèse de doctorat : Génétique cellulaire et moléculaire : Evry-Val d'Essonne : 2008. / Titre provenant de l'écran-titre.
|
5 |
L'hyperglycérolémie familiale au Saguenay-Lac-Saint-Jean : étude démogénétique et origine de la mutation N288D du gène de la glycérol kinase /Saint-Gelais, Éric. January 2004 (has links)
Thèse (M.Sc.)--Université Laval et Université du Québec à Chicoutimi, 2004. / Bibliogr.: f. 130-136. Webographie: f. 137. Publié aussi en version électronique.
|
6 |
Caractérisation génétique de différents mutants de la stomatite vésiculeuseBrassard, Frédérick January 2009 (has links) (PDF)
Malgré les avancées considérables de la cancérologie, de nouvelles thérapies sont toujours recherchées étant donné les effets secondaires des traitements actuels. Peu connue, la virothérapie oncolytique consiste à utiliser un virus pour détruire des cellules cancéreuses tout en épargnant les saines. Sur les mutants T1026R1 et TP3R1 du VSV de la famille des vésiculovirus portant un génome à ARN négatif de 11 kb, des efforts sont entrepris afin de prouver qu'ils sont des armes efficaces contre le cancer. Cependant, leur faible pouvoir apoptique ainsi que la persistance démontrée pour T1026R1 dans les cellules H4 les rendent moins attrayants. D'autres mutants du VSV, soit TR5R1 et TP6R1 pourraient également être de bons candidats dans la virothérapie oncolytique. Ils ne persistent pas, ils sont de meilleurs inducteurs d'apoptose et comme les mutants T1026R1 et TP3R1, ils induisent fortement la réponse des interférons. Afin de comprendre les différences quant au phénotype d'infection des mutants TP5R1 et TP6R1, le séquençage du génome entier de la souche sauvage HR ainsi que tous les mutants thermosensibles et thermorésistants a été entrepris. Les mutations responsables de la thermosensibilité vs thermorésistance pourront du même coup être révélées. Les résultats confirment les mutations M51R sur la protéine de la matrice de T1026R1 et de T1026 et V221F-S226R de TP3R1. Les mutants TP5R1 et TP6R1 portent respectivement les mutations E254Q et E254G sur le « PH domain » de leur glycoprotéine. Les mêmes mutations sont retrouvées chez TP5 et TP6 avec en plus la mutation D232G aussi sur le
« PH domain ». L'analyse de la structure secondaire montre des changements par rapport au VSV Indiana HR, alors que l'analyse de la structure tridimensionnelle montre que seule la mutation D232G altère la structure. La présence de cette mutation sur les souches thermosensibles T1026, TP5, TP6 et le VSV Indiana San juan ainsi que sa conséquence sur la structure 3D laissent présager qu'elle pourrait être responsable de la thermosensibilité. La cartographie génétique des virus BR, T1026, T1026R1, TP3, TP3R1, TP5, TP5R1, TP6 et TP6R1 permettra d'approfondir la compréhension de leur phénotype d'infection particulier pour éventuellement construire un virus oncolytique recombinant conjuguant les avantages de chacun.
|
7 |
Conséquences fonctionnelles et structurales de l'association de deux mutations du récepteur des androgènes dans le cancer de la prostateMonge, Audrey Ceraline, Jocelyn. January 2009 (has links) (PDF)
Thèse de doctorat : Sciences du vivant : Strasbourg 1 : 2008. / Titre provenant de l'écran-titre. Bibliogr. p. 179-199.
|
8 |
Étude sur la tyrosinémie héréditaire au Saguenay-Lac-St-Jean : fréquence et expression de la mutation IVS12+5g-->a /Poudrier, Jacques. January 1997 (has links)
Thèse (M.Sc.) -- Université Laval, 1997. / Les chapitres 3 à 5, rédigés par l'auteur et collab. en anglais, avec résumés en français, ont été soumis ou publiés dans différents titres de périodiques. Bibliogr. Publ. aussi en version électronique.
|
9 |
Étude de l'utilisation du lactose à l'aide de mutants chez Rhizobium meliloti.Niel, Christian, January 1900 (has links)
Th. 3e cycle--Biochim., microbiol. Lille 1, 1979. N°: 778.
|
10 |
Prime editing of RYR1 geneSong, Bo 17 April 2024 (has links)
Titre de l'écran-titre (visionné le 9 avril 2024) / Les myopathies liées à *RYR1*, les myopathies congénitales les plus fréquemment diagnostiquées, se caractérisent par une hypotonie musculaire squelettique et une faiblesse musculaire squelettique non progressive ou lentement progressive. Les myopathies liées à *RYR1* sont causées par des mutations dans le gène *RYR1*. L'édition Prime a le potentiel d'atteindre une efficacité élevée dans le traitement des myopathies liées à *RYR1* en ciblant les mécanismes physiopathologiques en amont. L'édition Prime utilise le même mécanisme que les systèmes CRISPR/Cas conventionnels, permettant toutes les conversions possibles de base à base et leurs combinaisons, mais n'exploite pas de modèle d'ADN double brin (dADN) ni ne confère de cassures double-brin (DSB) dans la séquence cible. La correction de la mutation T4709M est un exemple important pour le traitement potentiel des maladies liées à *RYR1*. Le maintien d'une homéostasie calcique adéquate pourrait réduire l'incidence de la faiblesse musculaire, améliorer la contraction musculaire et renforcer la fonction motrice globale. La correction des mutations du gène *RYR1* en utilisant l'édition Prime offre également la possibilité de prévenir l'apparition de complications associées aux maladies liées à *RYR1*. La correction précoce de la mutation T4709M pourrait améliorer le pronostic à long terme des personnes atteintes en fonction de l'évolution observée de la faiblesse musculaire et de l'incapacité. Cette approche offre la possibilité d'établir des schémas thérapeutiques plus efficaces et individualisés afin d'optimiser les avantages thérapeutiques et de minimiser simultanément les effets indésirables. Ainsi, cette étude vise à explorer l'application de l'édition Prime pour le traitement des myopathies liées à *RYR1*. Les myopathies liées à *RYR1* sont causées par des mutations dans le gène *RYR1*. L'efficacité de l'édition Prime dans la correction de T4709M, une mutation faux-sens de *RYR1*, a été évaluée à la fois *in vitro* et *in vivo*. Pour les expériences *in vitro*, les plasmides d'édition Prime ont été transfecté dans des cellules HEK293T, des cellules primaires de fibroblastes humains, une lignée de cellules de myoblastes humains, des cellules primaires de fibroblastes *RYR1ᵀᴹ/ᵀᴹ* de souris et des cellules C2C12 par électroporation. Pour les expériences *in vivo*, les plasmides d'édition Prime ont été injectés dans le modèle de souris *RYR1ᵀᴹ/ᵀᴹ*, suivi d'une électroporation. Plusieurs pegARN ont été testés. Les résultats des expériences *in vitro* montrent que l'efficacité de correction varie selon les pegARN. PE3 est l'un des dispositifs incrémentiels de l'édition Prime. PE3b est une version ajustée de PE3 avec une efficacité de correction améliorée et une gamme étendue de modifications génétiques ciblées. La stratégie PE3 s'est révélée plus efficace que la stratégie PE3b pour corriger la mutation ponctuelle. L'efficacité de correction de l'édition Prime peut être améliorée en effectuant plusieurs transfections ou en ajoutant une séquence ARN formant des doubles brins (appelée TevopreQ1) au pegARN. L'efficacité de correction de la mutation *RYR1* T4706M par l'édition Prime *in vivo* ne peut être confirmée. / *RYR1*-related myopathies, the most frequently diagnosed congenital myopathies, are characterized by skeletal muscle hypotonia and non-progressive or slowly progressive skeletal muscle weakness. *RYR1*-related myopathies are caused by mutations in the *RYR1* gene. Prime editing has the potential to achieve a high efficiency in the treatment of *RYR1*-related myopathies by targeting the upstream of the pathophysiological mechanisms. Prime editing employs the same mechanism as conventional CRISPR/Cas systems mediating all 12 possible base-to-base conversions and combinations but does not exploit a dDNA template or confer DSBs in the target sequence. Correction of the T4709M mutation is important example for the potential treatment of *RYR1*-related diseases. Maintenance of proper calcium homeostasis could ameliorate muscle weakness, improve muscle contractility, and enhance overall motor function. Correcting mutations of the *RYR1* gene using Prime editing also offers the potential to prevent the occurrence of complications associated with *RYR1*-related diseases. Early correction of the T4709M mutation may improve the long-term prognosis for affected individuals based on observed progression of muscle weakness and disability. This approach offers the potential for establish more effective and individualized treatment regimens to optimize therapeutic benefits and to simultaneously minimize adverse effects. Thus, this study aims to explore the application of Prime editing for treating *RYR1*-related myopathies. *RYR1*-related myopathies are caused by mutations in the *RYR1* gene. The efficiency of Prime editing in correcting T4709M, a missense mutation of *RYR1*, was evaluated both *in vitro* and *in vivo*. For *in vitro* experiments, the Prime editing plasmids were transfected into HEK293T cells, human fibroblast primary cells, human myoblast cell line, mouse *RYR1ᵀᴹ/ᵀᴹ* fibroblast primary cells, and C2C12 cells through electroporation. For *in vivo* experiments, the Prime editing plasmids were injected into *RYR1ᵀᴹ/ᵀᴹ* mouse model followed by electroporation. Multiple pegRNAs were tested. The results of *in vitro* experiments show that correction efficiency varies across pegRNAs. PE3 is one of the incremental devices in Prime editing. PE3b is an adjusted version of PE3 with improved editing efficiency and expanded range of targeted genetic modifications. The PE3 strategy was found to be a more effective than PE3b strategy for correcting the point mutation. The correction efficiency of Prime editing can be improved by conducting multiple transfections or by adding a RNA sequence forming double strands (called TevopreQ1) to pegRNA. The efficiency of correcting *RYR1* T4706M mutation by Prime editing *in vivo* cannot be confirmed.
|
Page generated in 0.077 seconds