• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Model-driven Visual Analytic Framework for Local Pattern Analysis

Zhao, Kaiyu 09 February 2016 (has links)
The ultimate goal of any visual analytic task is to make sense of the data and gain insights. Unfortunately, the process of discovering useful information is becoming more challenging nowadays due to the growing data scale. Particularly, the human cognitive capabilities remain constant whereas the scale and complexity of data are not. Meanwhile, visual analytics largely relies on human analytic in the loop which imposes challenge to traditional human-driven workflow. It is almost impossible to show every aspect of details to the user while diving into local region of the data to explain phenomenons hidden in the data. For example, while exploring the data subsets, it is always important to determine which partitions of data contain more important information. Also, determining the subset of features is vital before further doing other analysis. Furthermore, modeling on these subsets of data locally can yield great finding but also introduces bias. In this work, a model driven visual analytic framework is proposed to help identify interesting local patterns from the above three aspects. This dissertation work aims to tackle these subproblems in the following three topics: model-driven data exploration, model-driven feature analysis and local model diagnosis. First, the model-driven data exploration focus on the problem of modeling subset of data to identify the co-movement of time-series data within certain subset time partitions, which is an important application in a number of domains such as medical science, finance, business and engineering. Second, the model-driven feature analysis is to discover the important subset of interesting features while analyzing local feature similarities. Within the financial risk dataset collected by domain expert, we discover that the feature correlation among different data partitions (i.e., small and large companies) are very different. Third, local model diagnosis provides a tool to identify interesting local regression models at local regions of the data space which makes it possible for the analysts to model the whole data space with a set of local models while knowing the strength and weakness of them. The three tools provide an integrated solution for identifying interesting patterns within local subsets of data.
2

Towards a model of mental preparation in elite sport

Jennings, Kenneth E. 09 1900 (has links)
This study examines the mental preparation of elite athletes using naturalistic action research. The focus of investigation was on the personal difficulty of dealing with the "expert issue" that existed in the consultative relationship. The unfolding research experience confronted the researcher with personal dilemmas that needed to be resolved; activating significant shifts in the direction of exploration. These shifts were triggered in conversational contexts, highlighting the impact of co-evolved intimate sharing. Quantum leaps in understanding occurred when the researcher; (a) realised that a research proposal had been formulated that was not congruent with ecosystemic philosophies, (b) discovered action research, thereby shifting from an isolated self-reflective position to embracing the phenomenon of shared inquiry, (c) formed an action research group to investigate consultative issues, (d) became aware that the action research process was a reflection of an individual's unique idiosyncratic interactive and thinking style, (e) had to deal with the impact of a work experience as the action group turned into a therapeutic team, and (f) aligned himself to a narrative writing style to formally report on the "fluid", "free-flow" conversational experiences that had occurred in the research context. "Reflective interactive exploration" written methodology to capture the ideas emerged as a formal that evolve conversation. This methodology became the vehicle to during (a) shift more responsibility onto the athlete to become the "researcher of self", (b) open up further conversation, and (c) to relieve the psychologist of the expert position. The methodology was also utilised in the action research group to explore issues and to exchange ideas with the supervisor. The theory of the "mask of competency" of the athlete existing in a "culture of competition" is forwarded. A therapeutic model that balances intervention techniques with therapeutic conversation is suggested when consulting with athletes. Therapeutic conversation is broadened to incorporate concepts such as "energy flow", "obstacles and resistances" and "connection and intimacy". The personal "expert issue" was found to be a "reflection" of the researcher's own unique perceptions and interactive tendencies. Addressing issues at this level of personal identity required special interpersonal conditions; a context of respectful, intimate conversation. / Psychology / D. Litt. et Phil. (Psychology)
3

Towards a model of mental preparation in elite sport

Jennings, Kenneth E. 09 1900 (has links)
This study examines the mental preparation of elite athletes using naturalistic action research. The focus of investigation was on the personal difficulty of dealing with the "expert issue" that existed in the consultative relationship. The unfolding research experience confronted the researcher with personal dilemmas that needed to be resolved; activating significant shifts in the direction of exploration. These shifts were triggered in conversational contexts, highlighting the impact of co-evolved intimate sharing. Quantum leaps in understanding occurred when the researcher; (a) realised that a research proposal had been formulated that was not congruent with ecosystemic philosophies, (b) discovered action research, thereby shifting from an isolated self-reflective position to embracing the phenomenon of shared inquiry, (c) formed an action research group to investigate consultative issues, (d) became aware that the action research process was a reflection of an individual's unique idiosyncratic interactive and thinking style, (e) had to deal with the impact of a work experience as the action group turned into a therapeutic team, and (f) aligned himself to a narrative writing style to formally report on the "fluid", "free-flow" conversational experiences that had occurred in the research context. "Reflective interactive exploration" written methodology to capture the ideas emerged as a formal that evolve conversation. This methodology became the vehicle to during (a) shift more responsibility onto the athlete to become the "researcher of self", (b) open up further conversation, and (c) to relieve the psychologist of the expert position. The methodology was also utilised in the action research group to explore issues and to exchange ideas with the supervisor. The theory of the "mask of competency" of the athlete existing in a "culture of competition" is forwarded. A therapeutic model that balances intervention techniques with therapeutic conversation is suggested when consulting with athletes. Therapeutic conversation is broadened to incorporate concepts such as "energy flow", "obstacles and resistances" and "connection and intimacy". The personal "expert issue" was found to be a "reflection" of the researcher's own unique perceptions and interactive tendencies. Addressing issues at this level of personal identity required special interpersonal conditions; a context of respectful, intimate conversation. / Psychology / D. Litt. et Phil. (Psychology)
4

Everyday mining : Exploring sequences in event-based data / Utforskning av sekvenser i händelsebaserade data

Vrotsou, Katerina January 2010 (has links)
Event-based data are encountered daily in many disciplines and are used for various purposes. They are collections of ordered sequences of events where each event has a start time and a duration. Examples of such data include medical records, internet surfing records, transaction records, industrial process or system control records, and activity diary data. This thesis is concerned with the exploration of event-based data, and in particular the identification and analysis of sequences within them. Sequences are interesting in this context since they enable the understanding of the evolving character of event data records over time. They can reveal trends, relationships and similarities across the data, allow for comparisons to be made within and between the records, and can also help predict forthcoming events.The presented work has researched methods for identifying and exploring such event-sequences which are based on modern visualization, interaction and data mining techniques. An interactive visualization environment that facilitates analysis and exploration of event-based data has been designed and developed, which permits a user to freely explore different aspects of this data and visually identify interesting features and trends. Visual data mining methods have been developed within this environment, that facilitate the automatic identification and exploration of interesting sequences as patterns. The first method makes use of a sequence mining algorithm that identifies sequences of events as patterns, in an iterative fashion, according to certain user-defined constraints. The resulting patterns can then be displayed and interactively explored by the user.The second method has been inspired by web-mining algorithms and the use of graph similarity. A tree-inspired visual exploration environment has been developed that allows a user to systematically and interactively explore interesting event-sequences.Having identified interesting sequences as patterns it becomes interesting to further explore how these are incorporated across the data and classify the records based on the similarities in the way these sequences are manifested within them. In the final method developed in this work, a set of similarity metrics has been identified for characterizing event-sequences, which are then used within a clustering algorithm in order to find similarly behavinggroups. The resulting clusters, as well as attributes of the clusteringparameters and data records, are displayed in a set of linked views allowing the user to interactively explore relationships within these. The research has been focused on the exploration of activity diary data for the study of individuals' time-use and has resulted in a powerful research tool facilitating understanding and thorough analysis of the complexity of everyday life.
5

Parallel Hierarchies: Interactive Visualization of Multidimensional Hierarchical Aggregates

Vosough, Zana 24 February 2020 (has links)
Exploring multi-dimensional hierarchical data is a long-standing problem present in a wide range of fields such as bioinformatics, software systems, social sciences and business intelligence. While each hierarchical dimension within these data structures can be explored in isolation, critical information lies in the relationships between dimensions. Existing approaches can either simultaneously visualize multiple non-hierarchical dimensions, or only one or two hierarchical dimensions. Yet, the challenge of visualizing multi-dimensional hierarchical data remains open. To address this problem, we developed a novel data visualization approach -- Parallel Hierarchies -- that we demonstrate on a real-life SAP SE product called SAP Product Lifecycle Costing. The starting point of the research is a thorough customer-driven requirement engineering phase including an iterative design process. To avoid restricting ourselves to a domain-specific solution, we abstract the data and tasks gathered from users, and demonstrate the approach generality by applying Parallel Hierarchies to datasets from bioinformatics and social sciences. Moreover, we report on a qualitative user study conducted in an industrial scenario with 15 experts from 9 different companies. As a result of this co-innovation experience, several SAP customers requested a product feature out of our solution. Moreover, Parallel Hierarchies integration as a standard diagram type into SAP Analytics Cloud platform is in progress. This thesis further introduces different uncertainty representation methods applicable to Parallel Hierarchies and in general to flow diagrams. We also present a visual comparison taxonomy for time-series of hierarchically structured data with one or multiple dimensions. Moreover, we propose several visual solutions for comparing hierarchies employing flow diagrams. Finally, after presenting two application examples of Parallel Hierarchies on industrial datasets, we detail two validation methods to examine the effectiveness of the visualization solution. Particularly, we introduce a novel design validation table to assess the perceptual aspects of eight different visualization solutions including Parallel Hierarchies.:1 Introduction 1.1 Motivation and Problem Statement 1.2 Research Goals 1.3 Outline and Contributions 2 Foundations of Visualization 2.1 Information Visualization 2.1.1 Terms and Definition 2.1.2 What: Data Structures 2.1.3 Why: Visualization Tasks 2.1.4 How: Visualization Techniques 2.1.5 How: Interaction Techniques 2.2 Visual Perception 2.2.1 Visual Variables 2.2.2 Attributes of Preattentive and Attentive Processing 2.2.3 Gestalt Principles 2.3 Flow Diagrams 2.3.1 Classifications of Flow Diagrams 2.3.2 Main Visual Features 2.4 Summary 3 Related Work 3.1 Cross-tabulating Hierarchical Categories 3.1.1 Visualizing Categorical Aggregates of Item Sets 3.1.2 Hierarchical Visualization of Categorical Aggregates 3.1.3 Visualizing Item Sets and Their Hierarchical Properties 3.1.4 Hierarchical Visualization of Categorical Set Aggregates 3.2 Uncertainty Visualization 3.2.1 Uncertainty Taxonomies 3.2.2 Uncertainty in Flow Diagrams 3.3 Time-Series Data Visualization 3.3.1 Time & Data 3.3.2 User Tasks 3.3.3 Visual Representation 3.4 Summary ii Contents 4 Requirement Engineering Phase 4.1 Introduction 4.2 Environment 4.2.1 The Product 4.2.2 The Customers and Development Methodology 4.2.3 Lessons Learned 4.3 Visualization Requirements for Product Costing 4.3.1 Current Visualization Practice 4.3.2 Visualization Tasks 4.3.3 Data Structure and Size 4.3.4 Early Visualization Prototypes 4.3.5 Challenges and Lessons Learned 4.4 Data and Task Abstraction 4.4.1 Data Abstraction 4.4.2 Task Abstraction 4.5 Summary and Outlook 5 Parallel Hierarchies 5.1 Introduction 5.2 The Parallel Hierarchies Technique 5.2.1 The Individual Axis: Showing Hierarchical Categories 5.2.2 Two Interlinked Axes: Showing Pairwise Frequencies 5.2.3 Multiple Linked Axes: Propagating Frequencies 5.2.4 Fine-tuning Parallel Hierarchies through Reordering 5.3 Design Choices 5.4 Applying Parallel Hierarchies 5.4.1 US Census Data 5.4.2 Yeast Gene Ontology Annotations 5.5 Evaluation 5.5.1 Setup of the Evaluation 5.5.2 Procedure of the Evaluation 5.5.3 Results from the Evaluation 5.5.4 Validity of the Evaluation 5.6 Summary and Outlook 6 Visualizing Uncertainty in Flow Diagrams 6.1 Introduction 6.2 Uncertainty in Product Costing 6.2.1 Background 6.2.2 Main Causes of Bad Quality in Costing Data 6.3 Visualization Concepts 6.4 Uncertainty Visualization using Ribbons 6.4.1 Selected Visualization Techniques 6.4.2 Study Design and Procedure 6.4.3 Results 6.4.4 Discussion 6.5 Revised Visualization Approach using Ribbons 6.5.1 Application to Sankey Diagram 6.5.2 Application to Parallel Sets 6.5.3 Application to Parallel Hierarchies 6.6 Uncertainty Visualization using Nodes 6.6.1 Visual Design of Nodes 6.6.2 Expert Evaluation 6.7 Summary and Outlook 7 Visual Comparison Task 7.1 Introduction 7.2 Comparing Two One-dimensional Time Steps 7.2.1 Problem Statement 7.2.2 Visualization Design 7.3 Comparing Two N-dimensional Time Steps 7.4 Comparing Several One-dimensional Time Steps 7.5 Summary and Outlook 8 Parallel Hierarchies in Practice 8.1 Application to Plausibility Check Task 8.1.1 Plausibility Check Process 8.1.2 Visual Exploration of Machine Learning Results 8.2 Integration into SAP Analytics Cloud 8.2.1 SAP Analytics Cloud 8.2.2 Ocean to Table Project 8.3 Summary and Outlook 9 Validation 9.1 Introduction 9.2 Nested Model Validation Approach 9.3 Perceptual Validation of Visualization Techniques 9.3.1 Design Validation Table 9.3.2 Discussion 9.4 Summary and Outlook 10 Conclusion and Outlook 10.1 Summary of Findings 10.2 Discussion 10.3 Outlook A Questionnaires of the Evaluation B Survey of the Quality of Product Costing Data C Questionnaire of Current Practice Bibliography
6

Découverte interactive de connaissances dans le web des données / Interactive Knowledge Discovery over Web of Data

Alam, Mehwish 01 December 2015 (has links)
Récemment, le « Web des documents » est devenu le « Web des données », i.e, les documents sont annotés sous forme de triplets RDF. Ceci permet de transformer des données traitables uniquement par les humains en données compréhensibles par les machines. Ces données peuvent désormais être explorées par l'utilisateur par le biais de requêtes SPARQL. Par analogie avec les moteurs de clustering web qui fournissent des classifications des résultats obtenus à partir de l'interrogation du web des documents, il est également nécessaire de réfléchir à un cadre qui permette la classification des réponses aux requêtes SPARQL pour donner un sens aux données retrouvées. La fouille exploratoire des données se concentre sur l'établissement d'un aperçu de ces données. Elle permet également le filtrage des données non-intéressantes grâce à l'implication directe des experts du domaine dans le processus. La contribution de cette thèse consiste à guider l'utilisateur dans l'exploration du Web des données à l'aide de la fouille exploratoire de web des données. Nous étudions trois axes de recherche, i.e : 1) la création des vues sur les graphes RDF et la facilitation des interactions de l'utilisateur sur ces vues, 2) l'évaluation de la qualité des données RDF et la complétion de ces données 3) la navigation et l'exploration simultanée de multiples ressources hétérogènes présentes sur le Web des données. Premièrement, nous introduisons un modificateur de solution i.e., View By pour créer des vues sur les graphes RDF et classer les réponses aux requêtes SPARQL à l'aide de l'analyse formelle des concepts. Afin de naviguer dans le treillis de concepts obtenu et d'extraire les unités de connaissance, nous avons développé un nouvel outil appelé RV-Explorer (RDF View Explorer ) qui met en oeuvre plusieurs modes de navigation. Toutefois, cette navigation/exploration révèle plusieurs incompletions dans les ensembles des données. Afin de compléter les données, nous utilisons l'extraction de règles d'association pour la complétion de données RDF. En outre, afin d'assurer la navigation et l'exploration directement sur les graphes RDF avec des connaissances de base, les triplets RDF sont groupés par rapport à cette connaissance de base et ces groupes peuvent alors être parcourus et explorés interactivement. Finalement, nous pouvons conclure que, au lieu de fournir l'exploration directe nous utilisons ACF comme un outil pour le regroupement de données RDF. Cela permet de faciliter à l'utilisateur l'exploration des groupes de données et de réduire ainsi son espace d'exploration par l'interaction. / Recently, the “Web of Documents” has become the “Web of Data”, i.e., the documents are annotated in the form of RDF making this human processable data directly processable by machines. This data can further be explored by the user using SPARQL queries. As web clustering engines provide classification of the results obtained by querying web of documents, a framework for providing classification over SPARQL query answers is also needed to make sense of what is contained in the data. Exploratory Data Mining focuses on providing an insight into the data. It also allows filtering of non-interesting parts of data by directly involving the domain expert in the process. This thesis contributes in aiding the user in exploring Linked Data with the help of exploratory data mining. We study three research directions, i.e., 1) Creating views over RDF graphs and allow user interaction over these views, 2) assessing the quality and completing RDF data and finally 3) simultaneous navigation/exploration over heterogeneous and multiple resources present on Linked Data. Firstly, we introduce a solution modifier i.e., View By to create views over RDF graphs by classifying SPARQL query answers with the help of Formal Concept Analysis. In order to navigate the obtained concept lattice and extract knowledge units, we develop a new tool called RV-Explorer (Rdf View eXplorer) which implements several navigational modes. However, this navigation/exploration reveal several incompletions in the data sets. In order to complete the data, we use association rule mining for completing RDF data. Furthermore, for providing navigation and exploration directly over RDF graphs along with background knowledge, RDF triples are clustered w.r.t. background knowledge and these clusters can then be navigated and interactively explored. Finally, it can be concluded that instead of providing direct exploration we use FCA as an aid for clustering RDF data and allow user to explore these clusters of data and enable the user to reduce his exploration space by interaction.
7

Exploration interactive, incrémentale et multi-niveau de larges collections d'images / Interactive, incremental and multi-level exploration of large collections of images

Rayar, Frédéric 22 November 2016 (has links)
Les travaux de recherche présentés et discutés dans cette thèse s’intéressent aux grandes collections d’images numériques. Plus particulièrement, nous cherchons à donner à un utilisateur la possibilité d’explorer ces collections d’images, soit dans le but d’en extraire de l’information et de la connaissance, soit de permettre une certaine sérendipité dans l’exploration. Ainsi, cette problématique est abordée du point de vue de l’analyse et l’exploration interactive des données. Nous tirons profit du paradigme de navigation par similarité et visons à respecter simultanément les trois contraintes suivantes : (i) traiter de grandes collections d’images, (ii) traiter des collections dont le nombre d’images ne cesse de croître au cours du temps et (iii) donner des moyens d’explorer interactivement des collections d’images. Pour ce faire, nous proposons d’effectuer une étude conjointe de l’indexation et de la visualisation de grandes collections d’images qui s’agrandissent au cours du temps. / The research work that is presented and discussed in this thesis focuses on large and evergrowing image collections. More specifically, we aim at providing one the possibility to explore such image collections, either to extract some kind of information and knowledge, or to wander in the collections. This thesis addresses this issue from the perspective of Interactive Data Exploration and Analytics. We take advantage of the similarity-based image collection browsing paradigm and aim at meeting simultaneously the three following constraints: (i) handling large image collections, up to millions of images, (ii) handling dynamic image collections, to deal with ever-growing image collections, and (iii) providing interactive means to explore image collections. To do so, we jointly study the indexing and the interactive visualisation of large and ever-growing image collections.

Page generated in 0.1786 seconds