• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 35
  • 16
  • 14
  • 14
  • 14
  • 11
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of Structure-Property Relationships in Materials Using Ab-Initio and Semi-Empirical Methods

Liyanage, Laalitha S I 11 May 2013 (has links)
Structure-property relationships of two crystal structures were investigated using computational methodologies in two different length scales:electronic and atomistic length scales. Electronic structure calculations were performed using density functional theory (DFT) with generalized gradient approximation (GGA), GGA+U (U is “on-site” electronelectron repulsion) and hybrid functional forms. Atomistic calculations were performed utilizing the semi-empirical interatomic formulation, Modified Embedded Atom Method (MEAM). Classical molecular dynamics simulations were performed on the atomistic length scale in order to investigate thermal properties. In the first study, structural, elastic and thermal properties of cementite (Fe3C) were investigated using a Modified Embedded Atom Method (MEAM) potential for iron-carbon (Fe-C) alloys. Previously developed Fe and C single element potentials were used to develop a Fe-C alloy MEAM potential, using a statistically-based optimization scheme to reproduce structural and elastic properties of cementite, the interstitial energies of C in bcc Fe as well as heat of formation of Fe-C alloys in L12 and B1 structures. The stability of cementite at high temperatures was investigated by molecular dynamics simulations. The nine single crystal elastic constants for cementite were obtained by computing total energies for strained cells. Polycrystalline elastic moduli for cementite were calculated from the single crystal elastic constants of cementite. The formation energies of (001), (010), and (100) surfaces of cementite were also calculated. The melting temperature and the variation of both the specific heat and volume with respect to temperature were investigated by performing a two-phase (solid/liquid) molecular dynamics simulation of cementite. The predictions of the potential are in good agreement with first-principles calculations and experiments. In the second study the site occupancy and magnetic properties of Zn-Sn substituted M-type Sr-hexaferrite (SrFe12-x(Zn0.5Sn0.5)xO19 with x = 1) were investigated using firstprinciples total-energy calculations. We find that in the ground-state configuration Zn-Sn ions preferentially occupy 4f1 and 4f2 sites unlike the model previously suggested by Ghasemi et al. where Zn-Sn ions occupy 2b and 4f2 sites. Our model predicts a rapid increase in saturation magnetic moment (Ms) as well as decrease in magnetic anisotropy compared to the pure M-type Sr-hexaferrite, which is consistent with experimental observations.
12

Bayesian, Frequentist, and Information Geometry Approaches to Parametric Uncertainty Quantification of Classical Empirical Interatomic Potentials

Kurniawan, Yonatan 20 December 2021 (has links)
Uncertainty quantification (UQ) is an increasingly important part of materials modeling. In this paper, we consider the problem of quantifying parametric uncertainty in classical empirical interatomic potentials (IPs). Previous work based on local sensitivity analysis using the Fisher Information has shown that IPs are sloppy, i.e., are insensitive to coordinated changes of many parameter combinations. We confirm these results and further explore the non-local statistics in the context of sloppy model analysis using both Bayesian (MCMC) and Frequentist (profile likelihood) methods. We interface these tools with the Knowledgebase of Interatomic Models (OpenKIM) and study three models based on the Lennard-Jones, Morse, and Stillinger-Weber potentials, respectively. We confirm that IPs have global properties similar to those of sloppy models from fields such as systems biology, power systems, and critical phenomena. These models exhibit a low effective dimensionality in which many of the parameters are unidentifiable, i.e., do not encode any information when fit to data. Because the inverse problem in such models is ill-conditioned, unidentifiable parameters present challenges for traditional statistical methods. In the Bayesian approach, Monte Carlo samples can depend on the choice of prior in subtle ways. In particular, they often "evaporate" parameters into high-entropy, sub-optimal regions of the parameter space. For profile likelihoods, confidence regions are extremely sensitive to the choice of confidence level. To get a better picture of the relationship between data and parametric uncertainty, we sample the Bayesian posterior at several sampling temperatures and compare the results with those of Frequentist analyses. In analogy to statistical mechanics, we classify samples as either energy-dominated, i.e., characterized by identifiable parameters in constrained (ground state) regions of parameter space, or entropy-dominated, i.e., characterized by unidentifiable (evaporated) parameters. We complement these two pictures with information geometry to illuminate the underlying cause of this phenomenon. In this approach, a parameterized model is interpreted as a manifold embedded in the space of possible data with parameters as coordinates. We calculate geodesics on the model manifold and find that IPs, like other sloppy models, have bounded manifolds with a hierarchy of widths, leading to low effective dimensionality in the model. We show how information geometry can motivate new, natural parameterizations that improve the stability and interpretation of UQ analysis and further suggest simplified, less-sloppy models.
13

A CONSTITUTIVE MODEL FOR NANOSTRUCTURES BASED ON SPATIAL SECANT

GONDHALEKAR, ROHIT H. 27 September 2005 (has links)
No description available.
14

Predictive Modeling for Developing Novel Metallic Glass Alloys

Ward, Logan Timothy 30 August 2012 (has links)
No description available.
15

Molecular dynamics of high temperature hydrogen attack

Bodden Connor, Mike Travis 09 December 2022 (has links) (PDF)
High temperature hydrogen attack (HTHA) is a damage mechanism that only affects carbon steel and low alloy material. Most of the data regarding HTHA are experimental-driven. Even though this approach has been successful, there are still much more things that the oil and gas industry does not understand about HTHA. The regions that were considered safe (below the Nelson curves) have experienced catastrophic failure. Our research consists of performing Molecular Dynamics (MD) and the Nudge Elastic Band (NEB) calculation of HTHA to better understand the atomistic behavior of this damage mechanism.
16

Bringing Newton and Bernoulli Into the Quantum World: Applying Classical Physics to the Modeling of Quantum Behavior in Transition Metal Alloys

Weiss, Elan J. January 2022 (has links)
No description available.
17

Atomistic Molecular Dynamics Studies of Grain Boundary Structure and Deformation Response in Metallic Nanostructures

Smith, Laura Anne Patrick 06 May 2014 (has links)
The research reported in this dissertation focuses on the response of grain boundaries in polycrystalline metallic nanostructures to applied strain using molecular dynamics simulations and empirical interatomic force laws. The specific goals of the work include establishing how local grain boundary structure affects deformation behavior through the quantitative estimation of various plasticity mechanisms, such as dislocation emission and grain boundary sliding. The effects of strain rate and temperature on the plastic deformation process were also investigated. To achieve this, molecular dynamics simulations were performed on both thin-film and quasi-2D virtual samples constructed using a Voronoi tessellation technique. The samples were subjected to virtual mechanical testing using uniaxial strain at strain rates ranging from 105s-1 to 109s-1. Seven different interatomic embedded atom method potentials were used in this work. The model potentials describe different metals with fcc or bcc crystal structures. The model was validated against experimental results from studying the tensile deformation of irradiated austenitic stainless steels performed by collaborators at the University of Michigan. The results from the model validation include a novel technique for detecting strain localization through adherence of gold nanoparticles to the surface of an experimental sample prior to deformation. Similar trends with respect to intergranular crack initiation were observed between the model and the experiments. Simulations of deformation in the virtual samples revealed for the first time that equilibrium grain boundary structures can be non-planar for model potentials representing fcc materials with low stacking fault energy. Non-planar grain boundary features promote dislocation as deformation mechanisms, and hinder grain boundary sliding. This dissertation also reports the effects of temperature and strain rate on deformation behavior and correlates specific deformation mechanisms that originate from grain boundaries with controlling material properties, deformation temperature and strain rate. / Ph. D.
18

Modélisation atomistique de la précipitation des hydrures de zirconium : Méthodologie de developpement d'un potentiel en liaisons fortes / Atomistic modeling of zirconium hydride precipitation : methodology for deriving a tight-binding potential

Dufresne, Alice 18 December 2014 (has links)
Le système zirconium-hydrogène est très étudié dans le cadre de la sûreté nucléaire car la précipitation d'hydrures entraîne la fragilisation des gainages, à base d'alliage de zirconium. Il s'agit de la première barrière de confinement des produits radioactifs : son intégrité doit être maintenue tout au long de la vie des assemblages combustible, en centrale y compris en cas d'accident et post-centrale (transport et entreposage). De nombreuses incertitudes demeurent quant aux cinétiques de précipitation des hydrures et à l'impact des contraintes sur leur précipitation. La modélisation à l'échelle atomique de ce système permettrait d'apporter des clarifications sur les mécanismes en jeu. Les méthodes traditionnelles de modélisation atomistique sont basées sur des approches thermostatistiques, dont la précision et la fiabilité dépendent du potentiel interatomique qui les alimente. Or il n'existe pas de potentiel rendant possible une étude rigoureuse du système Zr-H. Cette thèse a permis de développer cet outil manquant en utilisant l'approximation des liaisons fortes. Au-delà de ce nouveau potentiel, ce travail donne un guide détaillé des nombreuses étapes d'une dérivation de tels potentiels avec la prise en compte de l'hybridation spd, ajustés ici sur des calculs DFT. Ce guide est établi tant pour un métal de transition pur que dans la perspective d'un couplage métal-covalent (carbures, nitrures et siliciures métalliques). / The zirconium-hydrogen system is of nuclear safety interest, as the hydride precipitation leads to the cladding embrittlement, which is made of zirconium-based alloys. The cladding is the first safety barrier confining the radioactive products: its integrity shall be kept during the entire fuel-assemblies life, in reactor, including accidental situation, and post-operation (transport and storage). Many uncertainties remain regarding the hydrides precipitation kinectics and the local stress impact on their precipitation. The atomic scale modeling of this system would bring clarifications on the relevant mechanisms. The usual atomistic modeling methods are based on thermostatistic approaches, whose precision and reliability depend on the interatomic potential used. However, there was no potential allowing a rigorous study of the Zr-H system. The present work has indeed addressed this issue: a new tight-binding potential for zirconium hydrides modeling is now available. Moreover, this thesis provides a detailed manual for deriving such potentials accounting for spd hybridization, and fitted here on DFT results. This guidebook has be written in light of modeling a pure transition metal followed by a metal-covalent coupling (metallic carbides, nitrides and silicides).
19

Atomistic simulation and experimental studies of transition metal systems involving carbon and nitrogen

Xie, Jiaying January 2006 (has links)
The present work was initiated to investigate the stability, structural and thermodynamic properties of transition metal carbides, nitrides and carbo-nitrides by atomistic simulations and experimentations. The interatomic pair potentials of Cr-Cr, Mn-Mn, Fe-Fe, C-C, Cr-C, Mn-C, Fe-C, Cr-Fe, Cr-N and Mn-N were inverted by the lattice inversion method and ab initio cohesive energies, and then employed to investigate the properties of Cr-, Mn- and Fe-carbides by atomistic simulations in this work. For the binary M7C3 carbide, the structural properties of M7C3 (M = Cr, Mn, Fe) were investigated by atomistic simulations. The results show that the stable structure for these compounds is hexagonal structure with P63mc space group. The cohesive energy of M7C3 calculated in this work indicates that the stability of carbides decreases with the increasing in metal atomic number. Further, the vibrational entropy of Cr7C3 was calculated at different temperatures and compared with the entropy obtained by experimentations. The comparison demonstrates that the main contribution to the entropy is made by the vibrational entropy. For the binary τ-carbides, the structural properties of Cr23C6 and Mn23C6, as well as the vibrational entropy of Cr23C6 were computed. Further, the site preference of ternary element Fe among 4a, 8c, 32f and 48h symmetry sites in Cr23-xFexC6 was studied. It has been seen that Fe atoms would firstly occupy 4a sites and then 8c sites. The lattice constant and stability of Cr23-xFexC6 were also computed with different Fe content. In order to understand the relative stability of the transition metal carbides and nitrides, the standard formation Gibbs energies of carbides and nitrides for Cr, Mn and Fe were compared. The order of carbon and nitrogen affinities for Cr, Mn and Fe was further clarified by the comparison of the interatomic pair potentials among Cr-C, Mn-C, Fe-C, Cr-N and Mn-N. It was found that Cr-N interaction was very strong in comparison with other binary interactions above and consequently, nitrogen addition would lead to a strong decrease in the thermodynamic activity of chromium in Cr-containing alloys. This was confirmed by the investigations of thermodynamic activities of Cr in the Fe-Cr-N and Fe-Cr-C-N alloys. The activities were measured in the temperature range 973-1173 K by solid-state galvanic cell method involving CaF2 solid electrolyte under the purified N2 gas. In addition, the analysis of nitrogen content and phase relationships in the Fe-Cr-N and Fe-Cr-C-N alloys equilibrated at 1173 K were carried out by inert-gas fusion thermal conductivity method, X-ray diffraction and scanning electron microscopy technique. The experimental results show that the solubility of nitrogen in the alloys decreases with the decreasing chromium content, as well as the increasing temperature. The addition of nitrogen to the alloys was found to have a strong negative impact on the Cr activity in Fe-Cr-N and Fe-Cr-C-N systems. / QC 20100929
20

Etude structurale du verre de TeO₂ et de la variété désordonnée TeO₂-δ par dynamique moléculaire. / Structural study of amorphous TeO₂ and disordered TeO₂-δ phase by molecular dynamics simulations.

Gulenko, Anastasia 23 October 2014 (has links)
Ce travail a pour but d’améliorer la description structurale du verre de TeO2 pur et d’étudier en profondeur la structure de la phase désordonnée δ-TeO2 au moyen de la dynamique moléculaire (DM). Nous avons établi des potentiels interatomiques (IAP), simples mais non triviaux, prenant en compte la polarisabilité des atomes de tellure et d’oxygène à l'aide du modèle cœur-coquille. Nous avons démontré le rôle important de la paire libre électronique de l'atome de Te dans la formation d'unités asymétriques TeOx. Les IAPs précis reproduisent 17 structures cristallines à base de TeO2 et sont appropriés pour les simulations par DM des systèmes désordonnés. Les simulations des structures de la phase vitreuse pure et de δ-TeO2 ont été effectuées par DM. Il a été démontré que le verre de TeO2 est principalement constitué d'unités structurales TeO3 et TeO4, et un grand nombre d'atomes d’oxygène non-pontant (NBO) est observé. La coordinence des atomes de tellure est plus faible dans le verre que dans les structures cristallines pures.Dans la phase δ-TeO2, les atomes de tellure forment un réseau cristallin (CFC) bien défini et les atomes d'oxygène présentent un grand désordre de position. Cette phase est caractérisée par une population d’unités structurales, une coordinence des atomes de tellure et une proportion d'atomes d’oxygène non pontant typique du verre. Par conséquent, la structure δ-TeO2 est plus proche de celle du verre que des structures d'autres polymorphes cristallines de TeO2 pures. / This work aims to improve the structural description of the pure TeO2 glass and to give a deep insight into the structure of the disordered δ-TeO2 phase by means of molecular dynamics (MD) simulations.We derived simple but nontrivial interatomic potentials (IAPs), which take into account the polarisability of tellurium and oxygen atoms using the core-shell model. We demonstrated the important role of the electronic lone pair of the tellurium atoms in the formation of asymmetrical TeOx units. The accurate IAPs is able to reproduce 17 crystalline TeO2-based structures and are appropriate for MD simulations of disordered systems.The MD simulations of the pure glass and δ-TeO2 phase structures were carried out. It was demonstrated that the TeO2-glass consists of mainly TeO3 and TeO4 structural units and a large number of non-bridging oxygen (NBO) atoms is observed. The coordination number of the tellurium atoms in the glass is less than in the pure crystalline structures.In the δ-TeO2 phase, the tellurium atoms form a well-defined crystalline (FCC) lattice and the oxygen atoms exhibit a large positional disorder. This phase has a structural units distribution and a tellurium coordination number and a proportion of NBO atoms similar to those of the glass. Hence, the structure of δ-TeO2 is closer to that of glass than to the structures of other pure TeO2 crystalline polymorphs.

Page generated in 0.0567 seconds