• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of surface treatments on interfacial strength and durability of metal-polymer composite bond

Sumaiya, Syeda Noor E 14 September 2016 (has links)
Effect of surface treatments on Strength and durability of aluminum 6061-Henkel Hysol EA 9891RP (room temperature curing epoxy) bond was studied using single lap shear, flatwise tensile and wedge crack test. The interfacial strength (IFSS) and % cohesive fracture varied with composite adhesive thickness and 0.03-0.04 mm that maximized the interfacial fracture was chosen to compare surface treatments. The effect of treatments on IFSS and tensile strength increased in the following order: PAA+BR127 (RT) < UT+BR127 (120oC) < Alodine < Alodine+EC3901(RT) < Alodine+BR127 (RT) < PAA < UT < UT+BR127 (RT) < Alodine+EC3901 (90oC) < PAA+EC3901(RT) < PAA+EC3901(90oC) < PAA+BR127 (120oC) < UT+EC3901(90oC) < UT+EC3901(RT) < Alodine+BR127 (120oC). The environmental durability decreased in the following order Alodine+EC3901 (90oC) < Alodine+BR127 (120oC) < PAA+BR127 (120oC) < PAA+EC3901 (90oC) < UT < UT+EC3901 (90oC) < UT+EC3901 (RT) < PAA+EC3901 (RT). PAA and Alodine, combined with BR127 (120 oC) and EC3901 (90oC) are the optimal surface treatments / October 2016
2

MECHANICAL EVALUATION OF NANOCOMPOSITE COATINGS

Geng, Kebin 01 January 2006 (has links)
An anti-reflective (AR) lens is an ultrathin multilayered structure composing of AR coatings on a lens substrate. These coatings can be made by a spin-coating process with a nanocomposite of UV curable acrylic monomers and well dispersed metal oxide nanoparticles. The in-situ UV polymerization rate was reduced by oxygen inhibition and the absorption of UV energy by the metal oxide nanoparticles. There are few studies of the mechanical properties of ultrathin polymeric coatings that include the effects of substrates, the viscoelastic behaviors of polymers in submicron scales and the effects of multilayered coatings. With a coating system based on UV cured dipentaerythritol pentaacrylate on silicon wafer substrates, nanoindentation tests showed that the nominal reduced contact modulus increased with the indentation load and penetration depth due to the effect of the substrate, in quantitative agreement with an elastic contact model. Ultrathin polymeric coatings subjected to constant indentation loads exhibit shear-thinning during flow. None of the models examined completely described the elastic response of an ultrathin polymeric coating on a compliant plastic substrate. The effective modulus was a function of coating-substrate property, indenter tip size, coating thickness, adhesion and residual stress. It was logarithmic dependent on the ratio of the indentation depth to the coating thickness prior to coating fracture. An elastic model, assuming shear-lag and a plane-stress state, was used to estimate the interfacial strength between a submicron coating and a compliant substrate. The critical indentation load for the indentation-induced delamination of the coating from the substrate increased with the third power of the indentation depth and was a linear function of the reciprocal of the coating thickness. The interfacial strength was 70.4 MPa. Mechanical properties and fracture characteristics of CVD ceramic and nanocomposite coatings on polymer substrates were evaluated by nanoindentation and nanoscratching tests. The AR lenses made with polymer nanocomposite coatings have better mechanical properties due to the close match of properties between the coatings and the plastic substrate. The new approach to making AR lenses with polymer nanocomposites on plastic substrate is promising.
3

Polymeric Loop Formation at Hard and Soft Interfaces

Ashcraft, Earl 01 August 2010 (has links)
Copolymers are used to increase the interfacial strength of immiscible components and suppress recombination of the minor phase by steric hindrance. The experiments conducted in these studies are designed to investigate in situ polymer loop formation at soft interfaces and functionalized nanotube surfaces. Block copolymers are the most effective type of copolymer for compatibilization because they extend perpendicular to the interface, allowing good entanglement with the homopolymer chains. Multiblock copolymers are more effective than diblock copolymers for strengthening the interface because they can cross the interface multiple times, forming “loops” in each phase that provide entanglement points for the homopolymer. The first part of this dissertation focuses on understanding how telechelic variables influence their effectiveness to compatibilize an immiscible polystyrene (PS)/polyisoprene (PI) homopolymer blend. A fast reacting anhydride and amine telechelic pair (Anh-PS-Anh/NH2-PI-NH2) are compared with a slower reacting epoxy and carboxylic acid pair (Epoxy-PS-Epoxy/COOH-PI-COOH). Different molecular weight pairs are used to investigate the influence of end group concentrations and steric effects. We also investigate how the loading level affects the conversion of one telechelic pair. The PI telechelic has a fluorescent tag, which enables gel permeation chromatography (GPC) with fluorescence detection to be used for determining the amount of tagged PI converted and the molecular weight of the copolymer formed in situ as a function of mixing time. The effectiveness of these telechelic pairs as compatibilizers is quantified by annealing the samples and using scanning electron microscopy (SEM) to measure the domain size of the minor phase as a function of annealing time. The second part of this study investigates the grafting of polymer loops to carboxylated multiwall nanotube (COOH-MWNT) surfaces and determining the reaction rate. These polymer loops will improve the nanotube dispersion by steric hindrance and improve energy transfer by creation of polymer chain entanglements. Fourier transform infrared spectroscopy (FT-IR) is used as a novel technique to measure the quantity of Epoxy-PS-Epoxy grafted to the nanotube surface. In addition, we determined the fraction of telechelics that form loops by further reacting the grafted nanotubes with monocarboxy terminated poly(4-methylstryrene) (COOH-P4MS), which only reacts with unbound Epoxy-PS-Epoxy chain ends.
4

Investigating the Effect of Thermal Stresses on the Hollow Glass Microsphere/Polyester Composites Interfacial strength by Acoustic Emission Method

Mousavi Khalkhali, Zeinab January 2016 (has links)
The effect of coatings on the interfacial strength of a hollow glass microsphere/polyester composite and their capacity to endure thermal stresses were studied by mechanical testing and an active Acoustic Emission (AE) method. AE was postulated to provide more local information at or near the glass/polyester interface due to the sensitivity of elastic waves to the rigidity of polymer chains at the glass sphere/polyester interface compared to mechanical testing. Three frequency ranges identified by multivariate statistics yet consolidated for the initial analysis into a band of 140-240 kHz, were found to be changing with the different coated glass filler for different glass content and heating state. Considering the acoustic behavior of the composites containing different levels of glass sphere content (1-10 vol%), a lower concentration (aminoethylamino)-propyl-trimethoxy silane coated glass (AS6), demonstrated the lowest attenuation after heating (associated with higher interfacial strength). As anticipated, the highest attenuation after heating was observed for uncoated glass (16K) due to expectedly weaker associations. Mechanical testing results after heating were consistent with the AE response for AS6 and 16K for this frequency range. Trends in amplitude for the three narrower, frequency ranges of 130-160 kHz, 180-220 kHz and 230-260 kHz were compared against that of 140-240 kHz and very small differences were observed. It was found that the frequency range of 130-60 kHz was more descriptive of the changes of interfacial strength in composites (at 10 vol%), being consistent with the mechanical test results. Considering the AE response at 130-160 kHz and mechanical data, higher concentration (aminoethylamino)-propyl-trimethoxy silane (AS12), better endured thermal stresses compared to other coatings. A smaller trial looked at the effect of moisture aging and subsequent thermal cycling on the glass/polymer interface strength as another method to perturb the interface. Attenuation for the band of 180-260 kHz was studied for aged versus non-aged composites. The commercial coating, L21 demonstrated a better moisture resistance before and after thermal cycling compared to uncoated glass spheres. An improved evaluation of interfacial strength in glass/polyester was expected using AE technique versus mechanical testing due to its higher sensitivity to changes in internal structure, however; no significant improvement compared to mechanical testing was observed, at least based on the analysis technique currently being used. / Thesis / Master of Applied Science (MASc) / Sheet molded compound (SMC) is a polymer material reinforced by fibers providing a combination of light weight and high mechanical properties and is used in automotive industry. Light weight fillers (hollow glass microspheres) are used to obtain further weight reduction; however, addition of these fillers leads to reduced mechanical properties and further problems during painting process known as ‘paint popping’. The former is due to uncertain interfacial state between polymer and fillers and the latter results from different thermal expansion behavior of the polymer and filler materials while the material is exposed to high temperatures for painting process. This research aims to devise a highly sensitive technique and evaluate its suitability compared to mechanical testing for investigation of the origin of aforementioned problems. Acoustic Emission (AE) is a method with high sensitivity to changes in internal structure of the material which is postulated to provide a better insight on material microstructure compared to more commonly used method i.e. mechanical testing. Use of interfacial controlling agents was examined to reduce the problems as a result of introduction of fillers. The effect of using surface modified fillers and the effect of thermal stresses on material was investigated using AE technique. Application of AE method in this study provided a good insight about the changes in material internal structure; however, it did not demonstrate a significant improvement in detecting the origins of studied problems compared to mechanical testing at least based on the analysis technique used in this study.
5

Investigation Of Fracture Behavior Of Steel/steel Laminates

Simsir, Mehmet 01 April 2004 (has links) (PDF)
A study is carried out into fracture behavior of steel/steel laminates both experimentally and through finite element analysis (FEM). The laminates produced by hot pressing consisted of low carbon and medium carbon steels with two volume fractions / 0.41 and 0.81. Fracture toughness, JIC has been measured using partial unloading technique assuming a critical value of crack extension. The technique is initially applied to monolithic material and then to the laminates in crack divider orientation. Evaluation of fracture toughness of laminates indicates that there is a substantial improvement of JIC with increase in the volume fraction. The systems under study were also evaluated by FEM modeling with the use MARC package program. To evaluate JIC, the problem has been evaluated in several steps / first two-dimensional plane strain problem is considered. This is followed by three-dimensional case and then by an artificially layered system, all for monolithic materials. Values of JIC derived were close to one another in all cases. Following this verification, the method, as implemented in layered monolithic system, was applied to laminates. This has shown that JIC of laminates can be predicted using FEM analysis, including the delamination. Values of JIC varied in the same manner as the experiment verifying that fracture toughness in the current system increases with increase in volume fraction. It has been concluded that modeling as implemented in this work can be used for useful composite systems incorporating hard/brittle reinforcements both in crack divider and crack arrester orientation.
6

Hybrid Carbon Fiber/ZnO Nanowires Polymeric Composite for Stuctural and Energy Harvesting Applications

Masghouni, Nejib 01 July 2014 (has links)
Despite the many attractive features of carbon fiber reinforced polymers (FRPs) composites, they are prone to failure due to delamination. The ability to tailor the fiber/matrix interface FRPs is crucial to the development of composite materials with enhanced structural performance. In this dissertation, ZnO nanowires (NWs) were grown on the surface of carbon fibers utilizing low temperature hydrothermal synthesis technique prior to the hybrid composite fabrication. The scanning electron microscopy revealed that the ZnO nanowires were grown uniformly on the surface of the carbon fabric. The surface grown ZnO NWs functionally-graded the composite material properties and ensured effective load transfer across the interface. To assess the influence of the ZnO NWs growth, reference samples were also prepared by exposing the carbon fabric to the hydrothermal conditions. The damping properties of the hybrid ZnO NWs-CFRP composite were examined using the dynamic mechanical analysis (DMA) technique. The results showed enhanced energy dissipation within the hybrid composite. Quasi-static tensile testing revealed that the in-plane and out-of-plane strengths and moduli of the hybrid FRP composite were also boosted. The interlaminar shear strength (ILSS) measurements suggested the improvement in the mechanical properties of the composite to the enhanced adhesion between the ZnO nanowires and the other constituents (carbon fiber and epoxy). It was necessary thus, to utilize the molecular dynamics simulations (MD) to investigate the adhesion within the CFRP structure upon growing the ZnO nanowires on the surface of the carbon fibers. Molecular models of the carbon fibers, the epoxy matrix and the ZnO nanowires were built. The resulting molecular structures were minimized and placed within a simulation box with periodic boundary conditions. The MD simulations were performed using the force field COMPASS to account for the empirical energy interactions between the different toms in the simulation box. Proper statistical thermodynamics were employed to relate the dynamics of the molecular model to the macroscale thermodynamic states (pressure, temperature and volume). Per the computed potential energies of the different components of the composite, it was found that the polar surfaces in the ZnO structures facilitates good adhesion properties in the graphite-epoxy composite. Besides the attractive mechanical properties of the ZnO nanowires, their piezoelectric and semiconductor properties were sought to design an energy harvesting device. To ensure sufficient charges collection from the mechanically stressed individual ZnO nanowires, a copper layer was sputtered on top of the ZnO nanowires which introduced also a Schottky effect. The mechanical excitation was provided by exposing the device to different vibration environment. The output voltage and currents were measured at the conditions (in terms of frequency and resistive load). It was demonstrated that the electrical output could be enhanced by stacking up similar devices in series or in parallel. Finally, in an attempt to exploit the reversibility of the electromechanical coupling of the energy harvesting device, the constitutive properties of the hybrid ZnO nanowires-CFRP composite were estimated using the Mori-Tanaka approach. This approach was validated by a finite element model (FEM). The FEM simulations were performed on a representative volume element (RVE) to reduce the computational time. The results demonstrated that the mechanical properties of the hybrid ZnO NWs-CFRP composite were better than those for the baseline CFRP composite with identical carbon fiber volume fraction (but with no ZnO NWs) which confirmed the experimental findings. Furthermore, the electro-elastic properties of the hybrid composite were determined by applying proper boundary conditions to the FE RVE. The work outlined in this dissertation will enable significant advancement in the next generation of hybrid composites with improved structural and energy harvesting multifunctionalties. / Ph. D.

Page generated in 0.0851 seconds