61 |
A study of Asymmetric Mach-Zehnder Interferometer and Optical waveguide Ring ResonatorTsai, Cheng-ju 21 July 2005 (has links)
The goal of the thesis is to fabricate the integrated asymmetric Mach-Zehnder Interferometer and Optical waveguide Ring Resonator with simple fabrication process. A 1.49
|
62 |
The Design of Fiber Optic Vibration SensorsLin, Yung-Li 05 August 2005 (has links)
Structural born vibration is the most concern issue for industry. Traditionally, the accelerometer is usually used as the major monitoring device for vibration. As the mechanism getting more and more complexity, more compact, tinier and more lighting, the traditional accelerometers are suffered from the loading effect. Its accuracy of measurement is suspected and cannot match the modern measurement requirement. Hence, the studies of fiber optic vibration sensors become an urgent issue in this era.
The reflection wavelength of a fiber Bragg grating¡]FBG¡^is sensitive to the variation of the strain and temperature. Our sensor configuration is made of an interferometer and fiber Bragg grating. The vibration induces a strain of the fiber Bragg grating, and it makes a phase difference between those two light beams in the interferometer. A demodulation circuit is needed to detect the phase difference caused by the vibration. In this project, the aim is focused on the vibration measurement for some complicated rotational machines or structures. A fiber optic accelerometer will be designed and studied as a vibration monitor for the other subprojects.
In this the thesis, two kinds of vibration sensor head are designed and studied, the first is a bending loss sensor head and the other is an optic fiber Bragg grating sensor head. The results are narrated as follows¡G¡]1¡^ The dynamic range of the bending loss sensing head is about 50 dB.¡]2¡^The dynamic range of the optic fiber Bragg grating sensing head is 38 dB with test frequency range between 100 ~ 400 Hz, the noise level is around 1.95 ¡Ñ 10-2 rad.
|
63 |
The Designs of Logic Gates and Drop Filter Based on Photonic CrystalsSun, Yu-Hsuan 03 July 2007 (has links)
Due to the property of the photonic crystal, like bandgap, many researches on them are discussed. Photons with wavelength within the bandgap cannot propagate through the crystal. Then placing some defects in the crystal, because the periodic arrangement is destroyed, it is possible to build a waveguide to guide light along certain path. One kind is coupled cavity waveguide. The photons can propagate in a coupled-cavity waveguide by coupling without radiation losses. So it is widely used to implement a variety of optical devices.
In this thesis, we use coupled cavity waveguide to construct devices. And the characteristics of Mach-Zehnder interferometer and power splitter are discussed. Then we propose two logic gate structures with an input port and two control ports. The state of control port determines the electric field at the output port. Besides, the four-port channel drop filter is proposed. It will make the three wavelengths ¢w1310, 1490 and 1550 nm¢w propagate in different waveguides. So it could be used as a wavelength demultiplexer for FTTH. Finally, the property of the PC-based rat-race circuit is investigated. By adjusting the phase of the control signal, we could decide the input signal to exit from output 1 or output 2. In this way, we could use it to function as a switch.
|
64 |
A Study of the Fiber Optic Leak DetectorHuang, Jian-Dau 17 July 2000 (has links)
non
|
65 |
The Novel Configuration Design of the Distributed Fiber Optic Leak Detection SystemKang, Hsien-Wen 27 June 2001 (has links)
The technique of the distributed fiber optic sensor system, the principle that we use Sagnac interferometer to sense time-varying physical field, can be used to measure the position of the disturbed physical field and have the ability of detecting continuous position. Based on the configuration of the Sagnac interferometer, sensing optic fiber is loop design, which is hard to be set in real surroundings, and a half length of loop fiber have to be the isolated protection of the physical field. Therefore, this essay brings up the In-Line conception to be the design direction. And we make use of the physical field of pipeline leak acoustic to detect disturbance position. The measurable range of systematic structure signal is 3¡Ñ10-4 ~ 3¡Ñ10-2 , and the dynamic range is 40 dB. On the other hand, the structure of polarization insensitive is brought up, the measurable range is 1.5¡Ñ10-3 ~ 3¡Ñ10-2 , and the dynamic range is 26 dB.
|
66 |
The Design of Fiber Bragg Grating Vibration SensorsChen, Chien-Cheng 14 July 2003 (has links)
The reflection wavelength of Fiber Bragg Grating is sensitive to the strain and the temperature¡¦s variation. We use Fiber Bragg Grating to be the sensor head and measure the vibration frequency in constant temperature environment. The vibration of object can make the sinusoidal strain to Fiber Bragg Grating, and it will make a little phase difference to the light of the fiber. Using the interferometer and demodulation system, we can measure the phase difference and vibration frequency. Our sensor configuration is made up of imbalance Mach-Zehnder interferometer and Fiber Bragg Grating. The two light of different path need different time to pass through the vibration source, so they make phase difference. We use the demodulation circuit to measure the phase difference causing by vibration and get the vibration frequency.
Our experiment structure is a novel configuration of Fiber Bragg Grating vibration sensor. Its intensity of signal is larger than the intensity of original sensor configuration, about 4dB.The novel sensor configuration is easier spread than traditional accelerometer and it is designed of all fiber. The accuracy for measuring low frequency vibration is 99.971%. The Dynamic range of the system is more than 45dB. It is larger than the dynamic range of original sensor configuration, about 9dB. The smallest signal that can be measured is about 0.0075rad.
|
67 |
The Design of the Interferometric Fiber¡VOptic Microphone with FBGLU, CHIEN-LI 17 July 2003 (has links)
Abstract
The electrical microphone has came to maturity, which has some restrictions on high electromagnetic and wet environments¡CFiber-Optic sensor can improve the problems, because it has better characters in electromagnetic interference and wet environment than the traditional microphone. The structure of Sagnac interferometer is circulator, so the design of head to a sensor has to wind fiber around. Because the minimum radius of winded fiber has a threshold, we can not miniaturize the sensor-head. A typical Mach-Zehnder interferometer has to use high-coherence light source and the length of two arms in equality without any interference, so it is difficult in fabrication. If we make a microphone by FBG and Mach-Zehnder interferometer, and the advantage is that we can use low-coherence light source, and shorten the length of two arms in interferometer. By using the structure, the minimum measured pressure of sound is 0.6 Pa, and the dynamic range is 30dB.
|
68 |
The Configuration Design of Fiber Bragg Grating HydrophonesChou, Yu 22 July 2003 (has links)
In this paper, the fesibility of using a Fiber Bragg Grating (FBG) as a sensing scheme to detect the underwater acoustic signals is analyzed. When a FBG is disturbed by an underwater sound, the wavelength of the FBG is changed. Therefore, the central spectrum of the reflected light is shifted according to the wavelength change of the FBG. This spectrum can be detected by an imbalanced two-arm interferometer. Its transfer function will be studied. Also, the polarization induced signal fading of those two-arm interferometers will be studied.
|
69 |
Analysis of multifrequency interferometry in a cylindrical plasmaKraft, Daniela Jutta 31 August 2015 (has links)
This work was motivated by questions raised from multifrequency microwave interferometer measurements taken in a cylindrical plasma on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) project. Standard data analysis based on a thin beam model neglecting refraction yields inconsistent electron densities and density profiles for different frequencies. This work focuses on the development of a model for the wave propagation through cylindrical plasmas when the plasma radius is on the order of the beam waist. For the calculations presented a Gaussian beam profile and plasma spatial profile were assumed. Both refraction by density gradients and finite beam sizes are found to play important roles and explain polychromatic differences in the electron densities and profiles. Calculations for the new model are compared to a thin beam model not accounting for refraction and experimental data from VASIMR.
|
70 |
Electron Diffraction and Interferometry Using NanostructuresMcMorran, Benjamin James January 2009 (has links)
Here it is demonstrated that nanofabricated structures can be used as electron optical elements in new types of electron interferometers. This enables novel investigations with electrons analogous to experiments in light and atom optics. Far field diffraction from a single nanograting is used to examine the force on a charge moving in close proximity to a surface. Near field diffraction from the nanograting is investigated in a Talbot interferometer. It is found that electron waves form replicas of the grating in free space, and these replicas can be de-magnified using illumination by a converging beam. An electron Lau interferometer has the same grating configuration as the Talbot interferometer, but uses spatially incoherent beams that give rise to drastically different interference behavior. A single optical theory is developed to efficiently model a variety of grating interferometers under a diverse set of illumination conditions, and it is used to understand the experiments described here. Applications for these new interferometers are discussed, as well as possible directions for future research.
|
Page generated in 0.0879 seconds