• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Designs of Logic Gates and Drop Filter Based on Photonic Crystals

Sun, Yu-Hsuan 03 July 2007 (has links)
Due to the property of the photonic crystal, like bandgap, many researches on them are discussed. Photons with wavelength within the bandgap cannot propagate through the crystal. Then placing some defects in the crystal, because the periodic arrangement is destroyed, it is possible to build a waveguide to guide light along certain path. One kind is coupled cavity waveguide. The photons can propagate in a coupled-cavity waveguide by coupling without radiation losses. So it is widely used to implement a variety of optical devices. In this thesis, we use coupled cavity waveguide to construct devices. And the characteristics of Mach-Zehnder interferometer and power splitter are discussed. Then we propose two logic gate structures with an input port and two control ports. The state of control port determines the electric field at the output port. Besides, the four-port channel drop filter is proposed. It will make the three wavelengths ¢w1310, 1490 and 1550 nm¢w propagate in different waveguides. So it could be used as a wavelength demultiplexer for FTTH. Finally, the property of the PC-based rat-race circuit is investigated. By adjusting the phase of the control signal, we could decide the input signal to exit from output 1 or output 2. In this way, we could use it to function as a switch.
2

The Design of Multi-channel Wavelength Division Multiplexing Based on Two-Dimensional Photonic Crystals

Kuo, Hung-Fu 03 July 2007 (has links)
The communication system using Wavelength-division multiplexing (WDM) allows for better utilization of the spectral bandwidth. Photonic crystals (PhCs) exhibit photonic bandgap (PBG) due to the periodic variation of the dielectric constant and photons with a range of frequencies within the PBG cannot travel through the crystal. By introducing defects into PhCs, it is possible to control the light propagation along certain paths. In this thesis, the characteristics of coupled cavity waveguides (CCWs) and drop filter are discussed. Then we propose a multi-channel WDM system based on CCWs. It can be applied in FTTH to filter the wavelengths of 1310, 1490 and 1550 nm in different CCWs and also can make the bandwidth of output wavelength become narrow to filter more wavelengths. In addition, by modulating the size of the resonator on the PhCs, it can drop the particular wavelength into the waveguide. Finally, we proposed a multi-channel drop filter with FHWM 0.8 nm. This device design is leading the way to achieve CWDM specification with 100% drop efficiency, high quality factor and almost no crosstalk. The operations of such an ultra-compact demultiplexer and drop filter based on PhCs are suitable to be used in WDM optical communication systems.
3

Crosstalk and signal integrity in ring resonator based optical add/drop multiplexers for wavelength-division-multiplexing networks

Mansoor, Riyadh January 2015 (has links)
With 400 Gbps Ethernet being developed at the time of writing this thesis, all-optical networks are a solution to the increased bandwidth requirements of data communication allowing architectures to become increasingly integrated. High density integration of optical components leads to potential ‘Optical/Photonic’ electromagnetic compatibility (EMC) and signal integrity (SI) issues due to the close proximity of optical components and waveguides. Optical EMC issues are due to backscatter, crosstalk, stray light, and substrate modes. This thesis has focused on the crosstalk in Optical Add/Drop Multiplexers (OADMs) as an EMC problem. The main research question is: “How can signal integrity be improved and crosstalk effects mitigated in small-sized OADMs in order to enhance the optical EMC in all-optical networks and contribute to the increase in integration scalability?” To answer this question, increasing the crosstalk suppression bandwidth rather than maximizing the crosstalk suppression ratio is proposed in ring resonator based OADMs. Ring resonators have a small ‘real estate’ requirement and are, therefore, potentially useful for large scale integrated optical systems. A number of approaches such as over-coupled rings, vertically-coupled rings and rings with random and periodic roughness are adopted to effectively reduce the crosstalk between 10 Gbps modulated channels in OADMs. An electromagnetic simulation-driven optimization technique is proposed and used to optimize filter performance of vertically coupled single ring OADMs. A novel approach to analyse and exploit semi-periodic sidewall roughness in silicon waveguides is proposed. Grating-assisted ring resonator design is presented and optimized to increase the crosstalk suppression bandwidth.
4

Rolled-Up Vertical Microcavities Studied by Evanescent Wave Coupling and Photoluminescence Spectroscopy

Böttner, Stefan 20 May 2015 (has links) (PDF)
Vertically rolled-up microcavities are fabricated using differentially strained nanomembranes by employing rate and temperature gradients during electron beam evaporation of SiO2. The geometry of the rolled-up tubes is defined by a photo-lithographically patterned polymer sacrificial layer beneath the SiO2 layers that is dissolved to start the rolling. Rolled-up tubes support resonances formed by constructive interference of light propagating along the circumference. Optical studies are performed in the visible spectral range using a micro-photoluminescence (µPL) setup to excite and detect optical modes. Record high quality factors (Q factors) of 5400 for rolled-up resonators probed in PL-emission mode are found and their limits are theoretically investigated. Axial modes can also be supported when an increased winding number in the center is realized by appropriate pattern designs. In addition, higher order radial modes can be confined when atomic layer deposition (ALD) coatings are applied. Both types of modes are identified using polarization and spatially resolved µPL maps. Evanescent-wave coupling by tapered fibers and tubes on substrates is the second method used to study light confinement and to demonstrate frequency filtering in ALD coated rolled-up microcavities. Scans are performed by monitoring light from a tunable laser in the range of 1520-1570 nm after transmission through the tapered fiber. Dips in the spectrum are found and attributed to fundamental and axial resonant modes. Moreover, by coupling two tapered fibers to a lifted rolled-up microcavity, a four-port add-drop filter is demonstrated as a future component for vertical resonant light transfer in on-chip optical networks. Simulations show that the subwavelength tube wall thickness limits the Q factor at infrared wavelengths and ALD coatings are necessary to enhance the light confinement. After coating, two linear polarization states are found in experiment and fundamental and axial modes can be selectively excited by coupling the fiber to different positions along the tube axis. Spatially and polarization resolved transmission maps reveal a polarization dependent axial mode distribution which is verified theoretically. The results of this thesis are important for lab-on-chip applications where rolled-up microcavities are employed as high resolution optofluidic sensors as well as for future uses as waveguide coupled components in three-dimensional multi-level optical data processing units to provide resonant interlayer signal transfer.
5

Rolled-Up Vertical Microcavities Studied by Evanescent Wave Coupling and Photoluminescence Spectroscopy

Böttner, Stefan 07 May 2015 (has links)
Vertically rolled-up microcavities are fabricated using differentially strained nanomembranes by employing rate and temperature gradients during electron beam evaporation of SiO2. The geometry of the rolled-up tubes is defined by a photo-lithographically patterned polymer sacrificial layer beneath the SiO2 layers that is dissolved to start the rolling. Rolled-up tubes support resonances formed by constructive interference of light propagating along the circumference. Optical studies are performed in the visible spectral range using a micro-photoluminescence (µPL) setup to excite and detect optical modes. Record high quality factors (Q factors) of 5400 for rolled-up resonators probed in PL-emission mode are found and their limits are theoretically investigated. Axial modes can also be supported when an increased winding number in the center is realized by appropriate pattern designs. In addition, higher order radial modes can be confined when atomic layer deposition (ALD) coatings are applied. Both types of modes are identified using polarization and spatially resolved µPL maps. Evanescent-wave coupling by tapered fibers and tubes on substrates is the second method used to study light confinement and to demonstrate frequency filtering in ALD coated rolled-up microcavities. Scans are performed by monitoring light from a tunable laser in the range of 1520-1570 nm after transmission through the tapered fiber. Dips in the spectrum are found and attributed to fundamental and axial resonant modes. Moreover, by coupling two tapered fibers to a lifted rolled-up microcavity, a four-port add-drop filter is demonstrated as a future component for vertical resonant light transfer in on-chip optical networks. Simulations show that the subwavelength tube wall thickness limits the Q factor at infrared wavelengths and ALD coatings are necessary to enhance the light confinement. After coating, two linear polarization states are found in experiment and fundamental and axial modes can be selectively excited by coupling the fiber to different positions along the tube axis. Spatially and polarization resolved transmission maps reveal a polarization dependent axial mode distribution which is verified theoretically. The results of this thesis are important for lab-on-chip applications where rolled-up microcavities are employed as high resolution optofluidic sensors as well as for future uses as waveguide coupled components in three-dimensional multi-level optical data processing units to provide resonant interlayer signal transfer.

Page generated in 0.0582 seconds