• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 37
  • 28
  • 23
  • 22
  • 12
  • 11
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 287
  • 67
  • 61
  • 59
  • 51
  • 48
  • 37
  • 35
  • 32
  • 28
  • 27
  • 27
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Optical Fiber Fabry-Perot Interferometer based Sensor Instrumentation System for Low Magnetic Field Measurement

Oh, Ki Dong 11 February 1998 (has links)
This dissertation proposes a miniaturized optical fiber based sensor system for the measurement of 3-dimensional vector magnetic fields. The operation of the sensor system is based on the detection of magnetostrictive dimensional changes in the sensor gage using a modified extrinsic Fabry-Perot Interferometer configuration. Because of the magnetostrictive reflector the gap length depends on the magnetic fields applied to the sensor. Since the diameter of the magnetostrictive sensor gage is 125 micrometer which is the same as that of the input/output fiber, the sensor is simply constructed by inserting the sensor gage and the input/output fiber into a small glass tube. The glass tube serves as both an aligner for the sensor gage and input/out fiber, and a passive temperature compensator. In addition, it also enhances the mechanical strength and compactness of the sensor. This sensor design shows 98 percent suppression of the thermally induced sensor output changes. The linear output of the sensor system is enhanced by transverse field annealing which increases magnetostrictive induction in the ferromagnetic sensor gage material and controls the sensor gage geometry. A 5-times increase in sensor sensitivity is obtained with the transverse field annealing and the use of a new magnetostrictive material. A modified sensor gage endface demonstrates 92 percent of fringe visibility, which further improves the performance of the interferometer. The signal fading in the interferometric sensors at the peak or bottom of a fringe is reduced by using a quadrature signal demodulation method. The system has been shown to have a resolution better than 100 nT over a measurement range from 100 to 40,000 nT. This research is supported financially by the Phillips Laboratory of the U.S. Air Force. / Ph. D.
92

Development of Novel Optical Fiber Interferometric Sensors with High Sensitivity for Acoustic Emission Detection

Deng, Jiangdong 22 October 2004 (has links)
For the purpose of developing a new highly-sensitive and reliable fiber optical acoustic sensor capable of real-time on-line detection of acoustic emissions in power transformers, this dissertation presents the comprehensive research work on the theory, modeling, design, instrumentation, noise analysis, and performance evaluation of a diaphragm-based optical fiber acoustic (DOFIA) sensor system. The optical interference theory and the diaphragm dynamic vibration analysis form the two foundation stones of the diaphragm-based optical fiber interferomtric acoustic (DOFIA) sensor. Combining these two principles, the pressure sensitivity and frequency response of the acoustic sensor system is analyzed quantitatively, which provides guidance for the practical design for the DOFIA sensor probe and system. To meet all the technical requirements for partial discharge detection, semiconductor process technologies are applied, for the first time to our knowledge, in fabricating the micro-caved diaphragm (MCD) used for the DOFIA sensor probe. The novel controlled thermal bonding method was proposed, designed, and developed to fabricate high performance DOFIA sensor probes with excellent mechanical strength and temperature stability. In addition, the signal processing unit is designed and implemented with high gain, wide band response, and ultra low noise. A systematic noise analysis is also presented to provide a better understanding of the performance limitations of the DOFIA sensor system. Based on the system noise analysis results, optimization measures are proposed to improve the system performance. Extensive experiments, including the field testing in a power transformer, have also been conducted to systematically evaluate the performance of the instrumentation systems and the sensor probes. These results clearly demonstrated the feasibility of the developed DOFIA sensor for the detection of partial discharges inside electrical power transformers, with unique advantages of non-electrically conducting, high sensitivity, high frequency response, and immunity to the electro-magnetic interference (EMI). / Ph. D.
93

Updating and Automating the Virginia Tech Single-Plate Interferometer

Grabowski, Henry Casmir 21 October 1999 (has links)
The single-plate interferometer is a powerful flow visualization and aerodynamic measurement tool. It can provide full-field data for the density distribution in a non-intrusive manner, and it can be used for highly unsteady flows. While the device itself represents a large decrease in complexity over other forms of interferometry, the data reduction procedure has traditionally been laborious and difficult. To remove these difficulties and to improve the accuracy of the Virginia Tech interferometer setup, the software has been revamped into a black box design removing the need to handle the code directly. Furthermore, the software has been made to be platform independent by implementing the algorithms using the Java programming language. New hardware has also been added which further simplifies the setup procedure. The improved setup and the new software is used to study the flow around a film cooled turbine blade in the Virginia Tech cascade wind tunnel. The study of this flowfield is used as a validation for the new algorithms and to illustrate the ease of use of the system. Through this analysis, the density distribution for the entire flowfield is acquired. Furthermore the use of Plexiglas as window material was tried. This proved to work, however the manufacturing processing of these windows proved relatively difficult. Studying the film layer close to the surface proved difficult because of inherent limitations with the single-plate interferometer. / Master of Science
94

Optical Path Length Multiplexing of Optical Fiber Sensors

Wavering, Thomas A. 23 February 1998 (has links)
Optical fiber sensor multiplexing reduces cost per sensor by designing a system that minimizes the expensive system components (sources, spectrometers, etc.) needed for a set number of sensors. The market for multiplexed optical sensors is growing as fiberoptic sensors are finding application in automated factories, mines, offshore platforms, air, sea, land, and space vehicles, energy distribution systems, medical patient surveillance systems, etc. Optical path length multiplexing (OPLM) is a modification to traditional white-light interferometry techniques to multiplex extrinsic Fabry-Perot interferometers and optical path length two-mode sensors. Additionally, OPLM techniques can be used to design an optical fiber sensor to detect pressure/force/acceleration and temperature simultaneously at a single point. While power losses and operating range restrictions limit the broadscale applicability of OPLM, it provides a way to easily double or quadruple the number of sensors by modifying the demodulation algorithm. The exciting aspect of OPLM is that no additional hardware is needed to multiplex a few sensors. In this way OPLM works with conventional technology and algorithms to drastically increase their efficiency. [1] / Master of Science
95

Sapphire Fiber Optic Sensor for High Temperature Measurement

Tian, Zhipeng 10 January 2018 (has links)
This dissertation focuses on developing new technologies for ultra-low-cost sapphire fiber-optic high-temperature sensors. The research is divided into three major parts, the souceless sensor, the simple Fabry-Perot (F-P) interrogator, and the sensor system. Chapter 1 briefly reviews the background of thermal radiation, fiber optic F-P sensors, and F-P signal demodulation. The research goal is highlighted. In Chapter 2, a temperature sensing system is introduced. The environmental thermal radiation was used as the broadband light source. A sapphire wafer F-P temperature sensor head was fabricated, with an alumina cap designed to generate a stable thermal radiation field. The radiation-induced optical interference pattern was observed. We demodulated the temperature sensor by white-light-interferometry (WLI). Temperature resolution better than 1°C was achieved. Chapter 3 discusses a novel approach to demodulate an optical F-P cavity at low-cost. A simple interrogator is demonstrated, which is based on the scanning-white-light-interferometry (S-WLI). The interrogator includes a piece of fused silica wafer, and a linear CCD array, to transform the F-P demodulation from the optical frequency domain to the spatial domain. By using the light divergence of an optical fiber, we projected a tunable reference F-P cavity onto an intensity distribution along a CCD array. A model for S-WLI demodulation was established. Performance of the new S-WLI interrogator was investigated. We got a good resolution similar to the well-known traditional WLI. At last, we were able to combine the above two technologies to a sapphire-wafer-based temperature sensor. The simple silica wafer F-P interrogator was optimized by focusing light to the image sensor. This approach improves the signal to noise ratio, hence allows the new integrator to work with the relatively weak thermal radiation field. We, therefore, proved in the experiment, the feasibility of the low-cost sourceless optical Fabry-Perot temperature sensor with a simple demodulation system. / PHD
96

Fiber-Optic Michelson Interferometer with Faraday Mirrors for Acoustic Sensing using a 3 × 3 Coupler and Symmetric Demodulation Scheme

Gartland, Peter Lanier 02 November 2016 (has links)
For the past 40 years, acoustic sensing has been a major avenue for the growth of interfero- metric fiber-optic sensors. Fiber-optic acoustic sensors have found uses in military, commer- cial, and medical applications. An interferometric fiber-optic acoustic sensor is presented utilizing the Michelson interferometer configuration with Faraday mirrors to eliminate po- larization fading. A 3 × 3 coupler is used as the beamsplitting component, and a symmetric demodulation algorithm is applied to recover the phase signal. This sensor has a theoretical resolution of 5.5 pico-strains and room to improve. Such improvements are discussed in the conclusion. / Master of Science
97

Microgap Structured Optical Sensor for Fast Label-free DNA Detection

Wang, Yunmiao 27 June 2011 (has links)
DNA detection technology has developed rapidly due to its extensive application in clinical diagnostics, bioengineering, environmental monitoring, and food science areas. Currently developed methods such as surface Plasmon resonance (SPR) methods, fluorescent dye labeled methods and electrochemical methods, usually have the problems of bulky size, high equipment cost and time-consuming algorithms, so limiting their application for in vivo detection. In this work, an intrinsic Fabry-Perot interferometric (IFPI) based DNA sensor is presented with the intrinsic advantages of small size, low cost and corrosion-tolerance. This sensor has experimentally demonstrated its high sensitivity and selectivity. In theory, DNA detection is realized by interrogating the sensor's optical cavity length variation resulting from hybridization event. First, a microgap structure based IFPI sensor is fabricated with simple etching and splicing technology. Subsequently, considering the sugar phosphate backbone of DNA, layer-by-layer electrostatic self-assembly technique is adopted to attach the single strand capture DNA to the sensor endface. When the target DNA strand binds to the single-stranded DNA successfully, the optical cavity length of sensor will be increased. Finally, by demodulating the sensor spectrum, DNA hybridization event can be judged qualitatively. This sensor can realize DNA detection without attached label, which save the experiment expense and time. Also the hybridization detection is finished within a few minutes. This quick response feature makes it more attractive in diagnose application. Since the sensitivity and specificity are the most widely used statistics to describe a diagnostic test, so these characteristics are used to evaluate this biosensor. Experimental results demonstrate that this sensor has a sensitivity of 6nmol/ml and can identify a 2 bp mismatch. Since this sensor is optical fiber based, it has robust structure and small size ( 125μm ). If extra etching process is applied to the sensor, the size can be further reduced. This promises the sensor potential application of in-cell detection. Further investigation can be focused on the nanofabrication of this DNA sensor, and this is very meaningful topic not only for diagnostic test but also in many other applications such as food industry, environment monitoring. / Master of Science
98

A dual wavelength fiber optic strain sensing system

Malik, Asif 03 March 2009 (has links)
The extrinsic Fabry-Perot interferometer (EFPI) has been extensively used as a strain sensor in various applications. However, like other interferometric sensors, the EFPI suffers from ambiguity in detecting directional changes of the applied perturbation, when the operating point is at a maxima or a minima on the transfer function curve. Different methods, or sensor configurations have been proposed to solve this problem. This thesis investigates the use of dual wavelength interferometry to overcome this limitation. Possible systems configurations based on dual wavelength interferometry were considered, and the comprehensive design and implementation of a dual laser time division multiplexed (TOM) system based is presented. The system operates by alternately pulse modulating two laser diodes, which are closely spaced in center wavelength. Although the strain rate measurement capability of the system is dependent primarily on the speed of its hardware and the accuracy of its software, it is shown that it can be considerably enhanced by employing digital signal processing techniques. / Master of Science
99

Active Phase Compensation in a Fiber-Optical Mach-Zehnder Interferometer / Aktiv faskompensation i en fiberoptisk Mach-Zehnder-interferometer.

Argillander, Joakim January 2020 (has links)
This thesis investigates the phenomena of phase stability in a fiber-optical MZI (Mach-Zehnder Interferometer). The MZI is a key building block of optical systems for use in experiments with both continuous-wave light and with single photons. By splitting incoming light into two beams and allowing it to interfere with itself, an interference pattern is visible at the output, and this phenomena can be used to code information. This is the operating principle in, for example, QKD (Quantum Key Distribution) experiments. This interference requires coherence that is higher than the length difference between the beams that the incoming light is split into. Particularly the phase of the beams must be equal to achieve constructive interference. If one beam is phase-shifted (with respect to the other) due to the light having traversed a longer path, only partially constructive interference is achieved. If the phase shift also varies with time this leads to a system where experiments can no longer reliably be performed. Sources of these fluctuations are thermal, acoustic or mechanical. Fiber-optical interferometers are particularly sensitive to path length fluctuations of the waveguides as the fiber-optic medium contracts and elongates with temperature, and also has a larger surface area for circulating air to mechanically disturb the waveguides than bulk optics interferometers. In this thesis, a solution to environment-induced phase drift is presented by evaluating implementations of feedback algorithms for automatic control. The algorithms PID (Proportional-, Integral-, Derivative controller) and an ICA (IncrementalControl Algorithm) have been investigated and the performance of these controllers has been compared when used with, and without, optical enclosures. The algorithms are implemented in an FPGA (Field-Programmable Gate Array) and the controller actuates an electro-optical phase modulator that can add a phase shift to one of the light beams in the MZI. This thesis shows that significant improvement in the optical stability can be achieved with active control compared to an interferometer without active phase control. / Det här examensarbetet undersöker fenomenet fasstabilitet i en fiber-optisk MZI (Mach-Zehnder-Interferometer). MZI:n är en viktig byggsten i optiska system som används till experiment med både kontinuerligt emitterande lasrar och med enskilda fotoner. Genom att dela upp inkommande ljus i två strålar och låta det interferera med sig själv så bildas ett interferensmöster vid utgången vilket kan användas för att koda information. Det här är huvudprincipen bakom, till exempel, experiment inom QKD (kvantnyckeldistribution, eng: Quantum Key Distribution). Denna interferens förutsätter en koherens (högre än längdskillnaden mellan strålarna) mellan strålarna som det inkommande ljuset är uppdelat i. Särskilt måste fasen hos de bägge strålarna vara lika för att åstadkomma fullständig konstruktiv intereferens. Om en stråle är fasförskjuten (i förhållande till den andra) på grund av att ljuset har färdats en längre sträcka så uppnås endast delvis konstruktiv interferens. Om fasförskjutningen även varierar med tiden så leder det till ett system där experiment inte längre kan pålitligt utföras. Sådana fluktuationer är orsakade av termiskt, akustiskt samt mekaniskt varierande effekter. Fiberoptiska interferometrar är särskilt känsliga mot förändringar i vågledarnas längd. Detta på grund av att det fiberoptiska mediet dras ihop respektive sträcks ut med temperaturen, samt att fibern har en större ytarea som cirkulerande luft kan påverka mekaniskt jämfört med interferometrar konstruerade av bulkoptik. I det här examensarbetet presenteras en lösning på problemet med miljöinducerad fasskift genom att utvärdera reglertekniska återkopplande algoritmer. Algoritmerna PID (Proportionell-, Integrerande-, Deriverande regulator) samt ICA (Inkrementell Regleralgoritm, eng: Incremental Control Algorithm) har undersökts och deras prestanda har jämförts med samt utan avskärmning. Algoritmerna har implementerats i en FPGA (fältprogrammerbar grindmatris, eng: Field-Programmable Gate Array) och regulatorn styr en elektrooptisk fasmodulator som kan addera en fasförskjutning till en av ljusstrålarna i MZI:n. Resultat visar att passiv avskärmning inte är tillräckligt utan behöver användas tillsammans med aktiv reglering för att uppnå stabilitet över en längre tidsperiod. Detta examensarbete visar på att en signifikant förbättring i den optiska stabiliteten kan uppnås med aktiv reglering jämfört med en interferometer utan aktiv fasreglering.
100

Soustava Fabry-Perotova a Michelsonova interferometru pro měření délek s femtosekundovým laserem / The system of Fabry-Perot and Michelson interferometer for length measurement with a femtosecond laser

Vémola, Tomáš January 2011 (has links)
The thesis deals with a design of a comparing interferometer. It concerns a setup of two interferometers, one of them is a Michelson and another a Fabry-Pérot type. This set-up is made to compare results of length measurements simultaneously performed by each of them. In the Theory, basic principles of Michelson and Fabry-Pérot interferometers are described. A special attention is paid to an innovative method of length measurement with tunable lasers and optical frequency comb. In the Practical Part, so-called Pilot Experimental Setup is described. It is a prototype that has been used to perform basic experiments on comparing of the two above mentioned methods. Based on experimental results and practical experience with the Pilot Experimental Setup, a Final Setup is designed. It comes in a form of a stand-alone instrument.

Page generated in 0.0954 seconds