• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 34
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 269
  • 48
  • 48
  • 42
  • 42
  • 31
  • 29
  • 22
  • 22
  • 21
  • 19
  • 19
  • 19
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Medium scale irregularities in the ionospheric electron content

Van Velthoven, P. J. F. January 1990 (has links)
Thesis (Doctoral)--Technische Universiteit Eindhoven, 1990. / In English, summary in Dutch. Includes bibliographical references.
182

A search for pulsed gravitational waves associated with gamma-ray bursts using LIGO /

Rahkola, Rauha John, January 2006 (has links)
Thesis (Ph. D.)--University of Oregon, 2006. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 174-183). Also available for download via the World Wide Web; free to University of Oregon users.
183

Systems design of a millimeter wave interferometer using a concentric ring antenna array and image plane beam combination

Biswas, Indraneil. January 2008 (has links)
Thesis (M.S.)--University of Delaware, 2008. / Principal faculty advisor: Dennis W. Prather, Dept. of Electrical & Computer Engineering. Includes bibliographical references.
184

Optical sensing as a means of monitoring health of multicomputer networks /

Forbis, David L., January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 62-63). Also available via the Internet.
185

A Bragg grating Fabry-Perot filter for next-generation broadband wireless local area networks

Madingoane, Kefilwe 26 February 2009 (has links)
M.Ing. / Over the past few years, fibre Bragg gratings have emerged as very important components in the photonics environment. Their discovery has greatly revolutionised the design of many complex devices, introducing simplicity and cost effectiveness. Extensive research has been invested into identifying possible areas of application for fibre Bragg gratings. This has resulted in fibre Bragg gratings finding a comfortable niche in the fields of sensors and optical communication systems. This study focuses on the possible application of fibre Bragg gratings in wireless local area networks. Wireless local area networks are rapidly becoming a market of great potential for the investor. To sustain the impressive image of this market, research initiatives should strive to secure cost-effective solutions for the implementation of wireless local area networks. With reduced costs on wireless local area network products, the demand for these products is expected to escalate. Research conducted at the COBRA Institute, has produced a novel concept of optically distributing data signals across a network, and later transmitting them at radio frequencies between antenna sites. This concept, earmarked for wireless local area networks, uses a fast tuneable laser source, graded index polymer optical fibre and a periodic optical filter to generate the radio frequency microwave signals. The periodic filter in this network system serves to up-convert the frequency of the signal to radio-frequency levels. The filter is an important component of the network and it is situated at the antenna site. For wireless local area networks that require broad coverage, the number of periodic optical filters deployed for the system can be high. This can have a negative impact on the cost of the network. This research proposes a low-cost Fabry-Perot filter designed from fibre Bragg gratings, to replace the optical periodic filter discussed in the network mentioned above. The work presented in this study consolidates the design theories of Fabry-Perot filters and fibre Bragg gratings. The grating-based Fabry-Perot filter is modelled using coupled-mode theory, simulated using the transfer matrix method and fabricated via the strain controlled phase mask technique. The figures of merit that describe the spectral performance of the Fabry-Perot filter (i.e. free spectral range, minimum resolvable bandwidth, finesse and contrast factor) are compared to calculations associated with classical designs. The final part of this study presents experimental measurements of the generated radio frequency microwave signal. The purpose of these measurements is firstly to demonstrate the feasibility of the entire concept of generating radio frequency microwave signals using optical frequency multiplication. The second goal for the measurements is to benchmark the performance of the new grating-based Fabry-Perot filter against expected results approximated through calculations. Both goals were achieved with encouraging observations.
186

Data reduction techniques for Very Long Baseline Interferometric spectropolarimetry

Kemball, Athol James January 1993 (has links)
This thesis reports the results of an investigation into techniques for the calibration and imaging of spectral line polarization observations in Very Long Baseline Interferometry (VLBI). A review is given of the instrumental and propagation effects which need to be removed in the course of calibrating such obervations, with particular reference to their polarization dependence. The removal of amplitude and phase errors and the determination of the instrumental feed response is described. The polarization imaging of such data is discussed with particular reference to the case of poorly sampled cross-polarization data. The software implementation of the algorithms within the Astronomical Image Processing System (AlPS) is discussed and the specific case of spectral line polarization reduction for data observed using the MK3 VLBI system is considered in detail. VLBI observations at two separate epochs of the 1612 MHz OH masers towards the source IRC+ 10420 are reduced as part of this work. Spectral line polarization maps of the source structure are presented, including a discussion of source morphology and variability. The source is sigmficantly circularly polarized at VLBI resolution, but does not display appreciable linear polarization. A proper motion study of the circumstellar envelope is presented, which supports an ellipsoidal kinematic model with anisotropic radial outflow. Kinematic modelling of the measured proper motions suggests a distance to the source of ~ 3 kpc. The cirumstellar magnetic field strength in the masing regions is determined as 1-3 mG, assuming Zeeman splitting as the polarization mechanism.
187

Development of a multi-point temperature fiber sensor based on a serial array of optical fiber interferometers

Della Tamin, Michelin 29 June 2015 (has links)
M.Ing. (Electrical and Electronic Engineering) / An experimental study of a multi-point optic fibre sensor for monitoring temperature changes is presented. The multi-point optic fibre sensor is made of a serial array of weak-reflectivity identical gratings. The weak-reflectivity identical gratings form the interferometric cavities UV printed on the single mode fibre. The ability to measure temperatures changes at different cavities along the serial array is particularly interesting for the monitoring of power transformers, high temperature furnaces and jet engines. Changes in temperature in each respective cavity is measured based on the spectral shift in the phase of the light from each respective cavity. The performance of the multi-point fibre sensor system is evaluated. Further, a theoretical and experimental investigation of a serial array composed of two cavities of different lengths is conducted. This investigation is aimed at measuring the impact of the overlap of the two distinct cavities in their respective frequency domain and determining the accuracy of the measurement. The result found shows that the sensor phase response is no more linear to temperature changes. It is also found that the nonlinear response of the sensor to temperature changes increases with the magnitude of the overlap.
188

Design and analysis of fiber-optic Mach-Zehnder interferometers for highly sensitive refractive index measurement

Ahsani, Vahid 05 May 2020 (has links)
The development of reliable, affordable, and efficient sensors is a key step forward in providing tools for efficient monitoring of critical environmental parameters. Fiber-optic sensors are already widely used in various industrial sensing fields. They have proven themselves reliable in harsh environments and can measure different physical quantities, such as temperature, pressure, strain, refractive index (RI), and humidity. Fiber-optic Mach-Zehnder Interferometer (MZI) is a well-studied optical fiber interferometer that has proven capacity for sensing ambient refractive index. In this dissertation, we present Fiber Bragg grating (FBG) embedded in a microfiber Mach-Zehnder Interferometer designed for sensing temperature and refractive index. The MZI is constructed by splicing a short length of 40-μm-diameter microfiber between standard single mode fibers. A one-millimeter-long FBG is then written in the microfiber using a direct, point-by-point, ultrafast laser inscription method. The microfiber MZI shows only moderate sensitivity to ambient refractive index and temperature changes. In contrast, the microfiber FBG is insensitive to ambient refractive index change, while it exhibits typical sensitivity to temperature variation. These distinct characteristics of the FBG and MZI sensors enable the simultaneous measurement of refractive index and temperature as well as temperature compensation in ambient refractive index measurement. Further, we report the use of a fiber-optic Mach-Zehnder Interferometer to measure core refractive index changes written by femtosecond laser irradiation. The core-offset interferometer was constructed by splicing a lightly misaligned stub of standard single-mode fiber between the device’s lead-in and lead-out optical fibers. When the core refractive index of an in-fiber interferometer is altered, that process changes the phase of the core light. Since the phase of light propagating in the cladding (reference arm) remains unchanged, the transmission fringe pattern of the interferometer undergoes a spectral shift. In the present research, that spectral shift was used to quantify the effective core refractive index change in a standard single-mode fiber. In addition, we designed and developed a custom flame-based tapering machine that is used to fabricate miniaturized Mach–Zehnder interferometers (MZIs) using sharply tapered photonic crystal fiber (PCF). This technique produces sensors capable of highly sensitive ambient refractive index (RI) measurements. The sensor is fabricated by fusion splicing a small stub of PCF between standard single-mode fibers with fully collapsed air holes of the PCF in a splicing region. Tiny flame geometry enables the sharp tapering of the PCF, resulting in a short fiber length and high RI sensitivity. It appears that sharp tapering has a great impact on RI sensitivity enhancement, when compared with methods that decrease taper waist diameter. The tapering technique is further used to construct the Mach-Zehnder Interferometer-based fiber-optic refractive index (RI) sensor by uniformly tapering standard single mode fibers (SMF) for RI measurement. The fabricated MZI device does not require any splicing of fibers and shows excellent RI sensitivity. / Graduate
189

Design and Development of Timmi - An Interferometric Radar

Srinivasan Venkatasubramanian, Karthik 01 January 2007 (has links) (PDF)
Interferometry has gained importance as a remote sensing technique to study topography, topographic change and volume and surface scattering properties of various natural targets. Interferometric radars rely on the ability to accurately measure amplitude and phase between signals received on two spatially separated antennas. The accuracy required for interferometric measurements place tight constraints on the performance of the radar hardware. This thesis details the development, construction and testing of a two-stage, two-channel Ku band downconverter ( also referred to as Dual Channel Downconverter or DDC)- which forms the core of the interferometer - to meet the requirements to make highly accurate interferometric measurements.
190

Ultrasonic fields in fluids: theoretical prediction using difference equations and three dimensional measurement using optical techniques

Dockery, George Daniel January 1983 (has links)
M. S.

Page generated in 3.1079 seconds