• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 370
  • 208
  • 67
  • 49
  • 40
  • 29
  • 21
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 941
  • 179
  • 151
  • 122
  • 120
  • 102
  • 98
  • 91
  • 89
  • 76
  • 74
  • 74
  • 72
  • 71
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Potentiating the Oncolytic Efficacy of Poxviruses

Komar, Monica 26 July 2012 (has links)
Several wild-type poxviruses have emerged as potential oncolytic viruses (OVs), including orf virus (OrfV), and vaccinia virus (VV). Oncolytic VVs have been modified to include attenuating mutations that enhance their tumour selective nature, but these mutations also reduce overall viral fitness in cancer cells. Previous studies have shown that a VV (Western Reserve) with its E3L gene replaced with the E3L homologue from, OrfV (designated VV-E3LOrfV), maintained its ability to infect cells in vitro, but was attenuated compared to its parental VV in vivo. Our goal was to determine the safety and oncolytic potential VV-E3LOrfV, compared to wild type VV and other attenuated recombinants. VV-E3LOrfV, was unable to replicate to the same titers and was sensitive to IFN compared to its parental virus and other attenuated VVs in normal human fibroblast cells. The virus was also less pathogenic when administered in vivo. Viral replication, spread and cell killing, as measures of oncolytic potential in vitro, along with in vivo efficacy, were also observed.. The Parapoxvirus, OrfV has been shown to have a unique immune-stimulation profile, inducing a number of pro-inflammatory cytokines, as well as potently recruiting and activating a number of immune cells. Despite this unique profile, OrfV is limited in its ability to replicate and spread in human cancer cells. Various strategies were employed to enhance the oncolytic efficacy of wild-type OrfV. A transient transfection/infection screen was created to determine if any of the VV host-range genes (C7L, K1L, E3L or K3L) would augment OrfV oncolysis. Combination therapy, including the use of microtubule targeting agents, Viral Sensitizer (VSe) compounds and the addition of soluble VV B18R gene product were employed to see if they also enhance OrfV efficacy. Unfortunately, none of the strategies mentioned were able to enhance OrfV.
452

Environmental factors affecting interferon-τ expression and secretion by in vitro produced bovine blastocysts

Hickman, Cristina Fontes Lindemann January 2010 (has links)
Interferon (IFN)τ is the luteotrophic signal in ruminants and is secreted by bovine blastocysts both in vivo and in vitro. IFNτ secretion is highly variable and its control is only partly understood. Most studies on the effects of environmental factors on IFNτ production have evaluated IFNτ production during the time of embryo elongation and attachment. There is less knowledge of how IFNτ production at the blastocyst stage is modulated. Therefore, the hypothesis of this thesis was that the amounts of IFNτ expressed and/or secreted by bovine blastocysts produced in vitro were modulated by environmental factors. In the first set of experiments, bovine embryos were incubated with a cytokine (granulocyte macrophage colony stimulating factor, GM-CSF). GM-CSF had been shown previously to promote embryo viability in a range of species and to modulate IFNτ secretion by ovine blastocysts and thus was classified as a beneficial environmental factor. Three experiments were conducted to test whether GM-CSF stimulated bovine blastocyst development and IFNτ secretion. Embryos were incubated with a range of different concentrations of GM-CSF (2, 5, 10 and 50 ng mL-1) and at different stages of development (1 to 3 and 1 to 9 days post-insemination). Bovine embryos were unresponsive to GM-CSF in terms of IFNτ secretion, pyruvate oxidation, rate of development, blastocyst yield, morphological quality and apoptotic index, irrespective of timing of exposure and/or concentration of GM-CSF. In the second part of the thesis, bovine blastocysts were exposed to a mild heat treatment (42°C for four h) to determine whether heat stress affected IFNτ expression by bovine blastocysts. A novel multiplex reverse-transcription polymerase chain reaction methodology was validated to detect IFNτ and heat shock protein (HSP)70 mRNA in individual bovine embryos relative to an endogenous gene (YWHAZ) and an exogenous mRNA (α-globin) and results were expressed both in absolute terms and in relation to the endogenous control. Heat treatment upregulated IFNτ mRNA expression, suggesting that detrimental environmental factors may influence IFNτ expression. Heat treatment also caused an increase in HSP70 mRNA expression but did not affect blastocyst morphology, suggesting that the level of stress caused by the heat treatment was great enough to activate the cellular stress response, but mild enough not to cause a change in morphology. In addition, the positive correlation between HSP70 and IFNτ transcript levels and the higher IFNτ expression by embryos which showed signs of degeneration and collapse compared to those which progressed in development suggested that IFNτ expression may be indicative of stress. The relationship between IFNτ expression and secretion in vitro with morphology, pyruvate metabolism, apoptotic index and cell number was inconsistent, suggesting that IFNτ production did not correlate with ‘quality’ (defined as an index of viability). Blastocyst yield, day of blastulation and change in morphology index did account for at least part of the variation in IFNτ production, suggesting that some intrinsic factors may regulate IFNτ secretion. These intrinsic factors, however, did not explain all the variation in IFNτ secretion between blastocysts. Therefore, the amount of IFNτ secreted by bovine blastocysts is modulated by both intrinsic and environmental factors. A model was proposed where different levels of stress affect survivability to different extents, and the ability to respond to mild levels of stress may be indicative of improved survivability.
453

Developing Antiviral Platforms And Assessing Interferon Against Kyasanur Forest Disease Virus

Cook, Bradley William Michael 28 October 2015 (has links)
Kyasanur Forest disease virus (KFDV) of the Flaviviridae virus family has caused seasonal infections and periodic outbreaks in Karnataka, India. First identified in 1957, KFDV annually infects 400-500 people and has a fatality rate of 3-5%; there are no approved antivirals and the existing licensed vaccine’s effectiveness appears to be questionable. Many tools for KFDV research are limited and this work sought to develop methods for analysing antivirals, including interferon (IFN)-α/β species. The BHK-21 (ATCC) cell line allowed for high virus propagation and distinguishable cytopathic effects (CPE) for determining antiviral effectiveness. The additional tool of a reverse genetics system expressing a full-length cDNA KFDV genome with a GFP reporter failed to propagate, despite numerous GFP genome-insertion strategies. The clinically approved IFN-α2a or IFN-α2b has had variable success at combatting flavivirus diseases in people, especially in the immuno-compromised. The continued passaging of KFDV-infected cells with repeated IFN-α2a treatment did not eliminate KFDV and had little effect on infectious particle production. IFN-αspecies, αWA and α were more effective than IFN-α2a and α2b at reducing KFDV; however dose ranges indicated that while low concentrations could limit CPE, higher concentrations were needed to inhibit virion release. Avoidance of IFN-α/β through Jak/STAT signalling repression was attributed to the NS5 protein, specifically the RdRp domain based on data obtained with luciferase and vesicular stomatitis virus (VSV) recovery assays. However, the mechanism appears to act subsequently to STAT1/2 activation without NS5 binding to any Jak/STAT components. A non-infectious, replicative system serving as a platform for antiviral drug testing against KFDV in a high throughput manner could only provide luciferase signals when the NS proteins capable of driving replication, were supplied in cis (subgenomic) but not in trans (antigenome). To conclude, IFN-α species such as IFN-αWA may be better suited than the licensed IFN-α2a for treatment of KFDV infections; however, IFN effects appear to be subdued in vitro due to the actions of the NS5 protein. While IFN may not be a successful antiviral against KFDV, the work in this thesis provides a foundation for evaluating other potential anti-KFDV therapeutics. / February 2016
454

Detection of latent tuberculosis infection among migrant farmworkers along the US-Mexico border

Oren, E., Fiero, M. H., Barrett, E., Anderson, B., Nuῆez, M., Gonzalez-Salazar, F. 03 November 2016 (has links)
Background: Migrant farmworkers are among the highest-risk populations for latent TB infection (LTBI) in the United States with numerous barriers to healthcare access and increased vulnerability to infectious diseases. LTBI is usually diagnosed on the border using the tuberculin skin test (TST). QuantiFERON-TB Gold In-Tube (QFT-GIT) also measures immune response against specific Mycobacterium tuberculosis antigens. The objective of this study is to assess the comparability of TST and QFT-GIT to detect LTBI among migrant farmworkers on the border, as well as to examine the effects of various demographic and clinical factors on test positivity. Methods: Participants were recruited using mobile clinics on the San Luis US-Mexico border and tested with QFT-GIT and TST. Demographic profiles and clinical histories were collected. Kappa coefficients assessed agreement between TST and QFT-GIT using various assay cutoffs. Logistic regression examined factors associated with positive TST or QFT-GIT results. Results: Of 109 participants, 59 of 108 (55 %) were either TST (24/71, 34 %) or QFT-GIT (52/106, 50 %) positive. Concordance between TST and QFT-GIT was fair (71 % agreement,kappa= 0.38, 95 % CI: 0.15, 0.61). Factors associated with LTBI positivity included smoking (OR = 1.26, 95 % CI-1.01-1.58) and diabetes/high blood sugar (OR = 0.70, 95 % CI = 0.51-0.98). Discussion: Test concordance between the two tests was fair, with numerous discordant results observed. Greater proportion of positives detected using QFT-GIT may help avoid LTBI under-diagnosis. Assessment of LTBI status on the border provides evidence whether QFT-GIT should replace the TST in routine practice, as well as identifies risk factors for LTBI among migrant populations.
455

Epigenetic and Gene Expression Signatures in Systemic Inflammatory Autoimmune Diseases

Imgenberg-Kreuz, Juliana January 2017 (has links)
Autoimmune diseases are clinical manifestations of a loss-of-tolerance of the immune system against the body’s own substances and healthy tissues. Primary Sjögren’s syndrome (pSS) and systemic lupus erythematosus (SLE) are two chronic inflammatory autoimmune diseases characterized by autoantibody production and an activated type I interferon system. Although the precise mechanisms leading to autoimmune processes are not well defined, recent studies suggest that aberrant DNA methylation and gene expression patterns may play a central role in the pathogenesis of these disorders. The aim of this thesis was to investigate DNA methylation and gene expression in pSS and SLE on a genome-wide scale to advance our understanding of how these factors contribute to the diseases and to identify potential biomarkers and novel treatment targets. In study I, differential DNA methylation was analyzed in multiple tissues from pSS patients and healthy controls. We identified thousands of CpG sites with perturbed methylation; the most prominent finding was a profound hypomethylation at regulatory regions of type I interferon induced genes in pSS. In study II, a cases-case study comparing DNA methylation in pSS patients with high fatigue to patients with low fatigue, we found methylation patterns associated to the degree of fatigue. In study III, RNA-sequencing was applied to investigate the transcriptome of B cells in pSS in comparison to controls. Increased expression of type I and type II interferon regulated genes in pSS was observed, indicating ongoing immune activation in B cells. In study IV, the impact of DNA methylation on disease susceptibility and phenotypic variability in SLE was investigated. We identified DNA methylation patterns associated to disease susceptibility, SLE manifestations and different treatments. In addition, we mapped methylation quantitative trait loci and observed evidence for genetic regulation of DNA methylation in SLE.   In conclusion, the results presented in this thesis provide new insights into the molecular mechanisms underlying autoimmunity in pSS and SLE. The studies confirm the central role of the interferon system in pSS and SLE and further suggest novel genes and mechanisms to be involved in the pathogenesis these autoimmune diseases.
456

The Effect of Human Alpha Interferon on Rat Kidney Cell Infected with Temperature-Sensitive Mutant of Rous Sarcoma Virus

Chang, Shiuan 05 1900 (has links)
LA31-NRK and B77-NRK are established cell lines that were normal rat kidney cells transformed with temperature-sensitive mutant (LA31) and wild-type Bratislava 77 (B77) of Rous sarcoma virus. It is recognized that many transformation-induced changes differentiate between normal and transformed cells. Morphology and four parameters of transformed cells such as saturation density, anchorage independence, plasminogen activator, and colony stimulating factor were used as indicators to observe the effect of human alpha interferon on the growth of NRK, LA31-NRK and B77-NRK. The results show that interferon could neither reverse the transformed cells to normal fashion nor change their behaviors or cause release of protease.
457

Effects of interleukin-27 on human CD8 T Cells

Yaneva, Teodora January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
458

Genetic Variations in Interferon-Induced Genes and HCV Recurrence after Liver Transplantation

Whitehill, Benjamin Cameron 01 January 2007 (has links)
Hepatitis C Virus (HCV) infection represents a worldwide pandemic and is currently the leading cause of cirrhosis and liver transplantation. After transplantation recurrence is almost universal with 96% of patients testing positive for viral RNA and exhibiting histological evidence of infection within the first year. Type I interferons (IFN) and interferon inducible genes are responsible for the innate antiviral state and single nucleotide polymorphisms (SNPs) within these genes may affect the patients ability to respond post-transplantation. We hypothesize the elucidation of associations between SNPs in Type-I Interferon and Interferon inducible genes and HCV recurrence post-liver transplantation might help to identify HCV patients with different prognosis and improve liver transplant recipient selection. 100 HCV positive patients were genotyped using Allelic Discrimination on an ABI Prism 7700 sequence detector (Applied Biosystems) for SNPs in IFNB1, OAS-1, and ISG-15 to establish a relationship between SNPs and clinical complications post-transplantation. Quantitative real-time polymerase chain reaction (QPCR) was also run to determine the relationship between SNPs or disease state and the level of RNA expression. Results were collected and analyzed using Fishers exact test, Kaplan-Meir method, and the log-rank test. Results obtained indicated that SNPs in OAS-1 are associated with HCV recurrence within 12 months post-orthotopic liver transplantation (OLT) and OAS-1 SNP genotypes were significantly associated with the development of fibrosis within the first year. Additionally we observed an association between the SNP genotypes of OAS-1 and ISG-15 and CMV infection post-OLT. A significant distribution of ISG-15 genotypes was also found to correlate with acute rejection. These findings might help identify patients at high risk of developing complications within the first year.
459

Non-canonical roles for STAT1 and STAT2 in mitochondrial biogenesis and fasting homeostasis.

Sisler, Jennifer 01 January 2012 (has links)
The signal transducer and activator of transcription 1 (STAT1) and 2 (STAT2) are primarily activated by interferons and play a central role in orchestrating responses to a variety of pathogens by activating the transcription of nuclear encoded genes that mediate antiviral, antigrowth and immune surveillance responses. In addition to their nuclear effects, we report that STAT1 and STAT2 inhibit the expression of mitochondrial encoded mRNAs by activating type I interferons (IFNβ) under basal conditions. STAT1-/- livers also exhibit elevated levels of nuclear encoded components of the electron transport chain (ETC). Treatment of wild-type mice with IFNβ inhibits both mitochondrial and nuclear transcription of the ETC components. The inhibition of mitochondrial encoded transcription by IFNβ is both STAT1 independent and dependent because it is also seen in STAT1-/- mice. This inhibitory action of IFNβ on mitochondrial transcription is mediated by a small pool of STAT1 and STAT2 residing within the mitochondria. This study would suggest a novel mechanism for STAT1 and STAT2, wherein they negatively regulate mitochondrial transcription and STAT1 coordinately regulates transcription of both mitochondrial and nuclear ETC components upon IFNβ stimulation. PGC1α has been described as the master regulator of mitochondrial biogenesis, and upon starvation its levels are elevated within the liver to increase mitochondrial biogenesis. The levels of PGC1α are increased in the STAT1-/- mice basally. However they are not increased further under starvation. Additionally, we report a novel phenotype of the STAT1-/- mice that suggests that they have a dysregulation of energy expenditure during starvation. We see that activation of hormone sensitive lipase which is the rate limiting step of lipolysis is attenuated in the adipose tissue of STAT1-/- mice and that there is less lipid accumulation in the livers of STAT1-/- compared to wild-type mice. The mechanism of STAT1’s role in energy regulation is not fully understood; however, this report would suggest that STAT1 does play a role within fasting homeostasis that is independent of IFNβ.
460

Physiopathologie du traitement de l'hépatite chronique C par les interférons, la ribavirine et les inhibiteurs spécifiques / Antiviral treatment of chronic hepatitis C : efficacy, resistance to interferon, mechanism of action of ribavirin, new therapeutic approach

Hézode, Christophe 21 November 2011 (has links)
Pas de résumé français / Pas de résumé anglais

Page generated in 0.0857 seconds