• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensory processing in the mouse circadian system

Walmsley, Lauren January 2016 (has links)
In order to anticipate the predictable changes in the environment associated with the earth’s rotation, most organisms possess intrinsic biological clocks. To be useful, such clocks require a reliable signal of ‘time’ from the external world. In mammals, light provides the principle source of such information; conveyed to the suprachiasmatic nucleus circadian pacemaker (SCN) either directly from the retina or indirectly via other visual structures such as the thalamic intergeniculate leaflet (IGL). Nonetheless, while the basic pathways supplying sensory information to the clock are well understood, the sensory signals they convey or how these are processed within the circadian system are not. One established view is that circadian entrainment relies on measuring the total amount of environmental illumination. In line with that view, the dense bilateral retinal input to the SCN allows for the possibility that individual neurons could average signals from across the whole visual scene. Here I test this possibility by examining responses to monocular and binocular visual stimuli in the SCN of anaesthetised mice. In fact, these experiments reveal that SCN cells provide information about (at most) irradiance within just one visual hemisphere. As a result, overall light-evoked activity across the SCN is substantially greater when light is distributed evenly across the visual scene when the same amount of light is non-uniformly distributed. Surprisingly then, acute electrophysiological responses of the SCN population do not reflect the total amount of environmental illumination. Another untested suggestion has been that the circadian system might use changes in the spectral composition of light to estimate time of day. Hence, during ‘twilight’, there is a relative enrichment of shortwavelength light, which is detectable as a change in colour to the dichromatic visual system of most mammals. Here I used a ‘silent substitution’ approach to selectively manipulate mouse cone photoreception, revealing a subset of SCN neurons that exhibit spectrally-opponent (blue-yellow) visual responses and are capable of reliably tracking sun position across the day-night transition. I then confirm the importance of this colour discrimination mechanism for circadian entrainment by demonstrating a reliable change in mouse body temperature rhythms when exposed to simulated natural photoperiods with and without simultaneous changes in colour. This identification of chromatic influences on circadian entrainment then raises important new questions such as which SCN cell types process colour signals and do these properties originate in the retina or arise via input from other visual regions? Advances in mouse genetics now offer powerful ways to address these questions. Our original method for studying colour discrimination required transgenic mice with red-shifted cone sensitivity – presenting a barrier to applying this approach alongside other genetic tools. To circumvent this issue I validated a modified approach for manipulating wildtype cone photoreception. Using this approach alongside optogenetic cell-identification I then demonstrate that the thalamic inputs to the SCN are unlikely to provide a major source of chromatic information. To further probe IGL-contributions to SCN visual responses, I next used electrical microstimulation to show that the thalamus provides inhibitory input to both colour and brightness sensitive SCN cells. Using local pharmacological inhibition I then show that thalamic inputs supress specific features of the SCN light response originating with the contralateral retina, including colour discrimination. These data thus provide new insight into the ways that arousal signals reaching the visual thalamus could modulate sensory processing in the SCN. Together then, the work described in this thesis provides important new insight into sensory control of the circadian system and the underlying neural mechanisms.
2

Assessment of the Integrative Roles of the Intergeniculate Leaflet in Circadian Timing and Reward Pathways

Guinn, Jessie, Jr. 01 November 2011 (has links)
No description available.
3

Caracateriza??o do n?cleo pr?-geniculado do sag?i (Callithrix jacchus) :proje??o retiniana, neuroqu?mica e atividade celular (express?o de FOS)

Lima, Ruthnaldo Rodrigues Melo de 30 April 2008 (has links)
Made available in DSpace on 2014-12-17T15:36:53Z (GMT). No. of bitstreams: 1 RuthnaldoRML.pdf: 3880208 bytes, checksum: 7da0684594a4d62a80785416490983fa (MD5) Previous issue date: 2008-04-30 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / In rodents, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian system. The SCN is considerate the site of an endogenous biological clock because can to generate rhythm and to synchronize to the environmental cues (zeitgebers) and IGL has been related as one of the main areas that modulate the action of SCN. Both receive projections of ganglion cells of retina and this projection to SCN is called retinohypothalamic tract (RHT). Moreover, the IGL is connected with SCN through of geniculohypothalamic tract (GHT). In primates (include humans) was not still demonstrated the presence of a homologous structure to the IGL. It is believed that the pregeniculate nucleus (PGN) can be the answer, but nothing it was still proven. Trying to answer that question, the objective of our study is to do a comparative analysis among PGN and IGL through of techniques immunohystochemicals, neural tracers and FOS expression after dark pulses. For this, we used as experimental model a primate of the new world, the common marmoset (Callithrix jacchus). Ours results may contribute to the elucidation of this lacuna in the circadian system once that the IGL is responsible for the transmission of nonphotic information to SCN and participate in the integration between photic and nonphotic stimulus to adjust the function of the SCN. In this way to find a same structure in primates represent an important achieve in the understanding of the biological rhythms in those animals / O sistema de temporiza??o circadiana (STC) ? respons?vel pela gera??o e modula??o dos ritmos circadianos que s?o oscila??es end?genas manifestadas pelos seres vivos para a maioria das fun??es e comportamentos, com per?odo em torno de 24 horas. Estes ritmos s?o sincronizados principalmente ao ciclo claro-escuro di?rio. O STC ? constitu?do por um conjunto de estruturas neurais interligadas, incluindo na sua composi??o um marca-passo encarregado da gera??o do ritmo, vias sincronizadoras e de sa?da aos efetores comportamentais. O n?cleo supraquiasm?tico do hipot?lamo (NSQ) ? tido como principal marcapasso circadiano. A les?o desse conjunto de c?lulas deixa o animal arr?tmico para algumas fun??es circadianas. A principal via direta de sincroniza??o ? o tracto retinohipotal?mico (TRH), que leva informa??o f?tica ambiental da retina ao NSQ. Uma segunda via, tida como de sincroniza??o indireta para o NSQ, ? o tracto gen?culohipotal?mico (TGH), que se origina das c?lulas produtoras de neuropept?deo Y (NPY) do folheto intergeniculado (FIG) do complexo geniculado lateral do t?lamo de roedores. Essas c?lulas tamb?m recebem proje??o direta da retina. Em primatas essa estrutura ainda n?o foi identificada. No entanto, um conjunto de c?lulas medial ao n?cleo geniculado lateral dorsal (GLD) do t?lamo, denominado de n?cleo pr?geniculado (NPG), se apresenta como poss?vel estrutura hom?loga ao FIG dos roedores, j? que algumas c?lulas do NPG apresentam imunorreatividade ao anticorpo contra NPY em diversos primatas estudados. Sabe-se que o sistema FIG-TGH al?m de estar relacionado ? modula??o f?tica do NSQ, parece tamb?m estar fortemente envolvido na sincroniza??o n?o-f?tica desse sistema. Ainda, as c?lulas imunorreativas a NPY est?o claramente mais envolvidas na sincroniza??o n?o-f?tica, comprovado pela marca??o da atividade metab?lica envolvendo o gene c-fos (gene de express?o imediata). Considerando este aspecto funcional e a dificuldade de identificar com precis?o uma estrutura hom?loga ao FIG em primatas, realizamos a caracteriza??o neuroqu?mica, analisamos o padr?o da proje??o retiniana e a express?o da prote?na do gene c-fos ap?s pulso de escuro, para melhor definir o papel do NPG dentro do STC. Para isso, usamos como modelo experimental um primata do novo mundo, o Callitrhix jacchus, conhecido popularmente como sag?i. Nossos dados confirmaram a hip?tese inicial de que o NPG, ou parte dele, seria hom?logo ao FIG de roedores. Encontramos, em toda extens?o do NPG do sag?i, neur?nios imunorreativos a NPY e uma densa proje??o retiniana em uma regi?o localizada mais pr?xima ao GLD. Conclu?mos que esta ?rea situada mais internamente, em rela??o ao complexo geniculado lateral do t?lamo, corresponde ao FIG e a por??o mais externa ao n?cleo geniculado lateral ventral dos roedores

Page generated in 0.1193 seconds