• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 11
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Unsupervised Detection of Interictal Epileptiform Discharges in Routine Scalp EEG : Machine Learning Assisted Epilepsy Diagnosis

Shao, Shuai January 2023 (has links)
Epilepsy affects more than 50 million people and is one of the most prevalent neurological disorders and has a high impact on the quality of life of those suffering from it. However, 70% of epilepsy patients can live seizure free with proper diagnosis and treatment. Patients are evaluated using scalp EEG recordings which is cheap and non-invasive. Diagnostic yield is however low and qualified personnel need to process large amounts of data in order to accurately assess patients. MindReader is an unsupervised classifier which detects spectral anomalies and generates a hypothesis of the underlying patient state over time. The aim is to highlight abnormal, potentially epileptiform states, which could expedite analysis of patients and let qualified personnel attest the results. It was used to evaluate 95 scalp EEG recordings from healthy adults and adult patients with epilepsy. Interictal Epileptiform discharges (IED) occurring in the samples had been retroactively annotated, along with the patient state and maneuvers performed by personnel, to enable characterization of the classifier’s detection performance. The performance was slightly worse than previous benchmarks on pediatric scalp EEG recordings, with a 7% and 33% drop in specificity and sensitivity, respectively. Electrode positioning and partial spatial extent of events saw notable impact on performance. However, no correlation between annotated disturbances and reduction in performance could be found. Additional explorative analysis was performed on serialized intermediate data to evaluate the analysis design. Hyperparameters and electrode montage options were exposed to optimize for the average Mathew’s correlation coefficient (MCC) per electrode per patient, on a subset of the patients with epilepsy. An increased window length and lowered amount of training along with an common average montage proved most successful. The Euclidean distance of cumulative spectra (ECS), a metric suitable for spectral analysis, and homologous L2 and L1 loss function were implemented, of which the ECS further improved the average performance for all samples. Four additional analyses, featuring new time-frequency transforms and multichannel convolutional autoencoders were evaluated and an analysis using the continuous wavelet transform (CWT) and a convolutional autoencoder (CNN) performed the best, with an average MCC score of 0.19 and 56.9% sensitivity with approximately 13.9 false positives per minute.

Page generated in 0.078 seconds