• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Intermediate temperature grain boundary embrittlement in nickel-base weld metals

Nissley, Nathan E. 22 September 2006 (has links)
No description available.
12

MECHANICAL PROPERTIES OF Sc₀․₁Ce₀․₀₁Zr₀․₈₉O₂ ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS

Lim, Wendy 2009 December 1900 (has links)
Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical performance. The aim of this study is to determine the mechanical properties of SCZ, ie. zirconia (ZrO₂) doped with Scandia (Sc₂O₃) and small amount of ceria (CeO₂) that are important for reliability and durability of the components manufactured from SCZ. The SCZ was prepared from powder by uniaxiall cold pressing at subsequent sintering at 1550 ºC for 4 hours. The density and porosity of the sintered samples was measured following the ASTM Standard C20-00 for alcohol immersion method. A pure cubic phase of SCZ sample was identified by X-ray diffraction (XRD) at room temperature. Quantitative compositional analyses for Zr, Sc, Ce, Hf and Ti were carried out on a Cameca SX50 electron microprobe with wavelength-dispersive spectroscopy (WDS) and energy-dispersive spectroscopy (EDS). Scanning Electron Microscopy (SEM) images were acquired using both secondary electron (SE) and back-scattered electron (BSE) detectors. WDS and EDS analysis also revealed that Zr, Sc, Ce, Hf and Ti are relatively homogeneously distributed in the structure. The average grain size of sintered SCZ samples was measured to be 4 μm. Thermal expansion at different temperatures for the SCZ ceramic was determined using Thermal Mechanical Analyzer, and the instantaneous Coefficient of Thermal Expansion (CTE) was found to be 8.726х10⁻⁶ 1/°C in the in 25-400 °C temperature range. CTE increases monotonically with temperature above 400 ºC to 1.16х10⁻⁵ at 890 °C, most likely as a result of thermo-chemical expansion due to an increase in oxygen vacancy concentration. Room temperature Vickers hardens of 12.5 GPa was measured at loads of 1000 g, while indentation fracture toughness was found to vary from 2.25 to 4.29 MPa m¹⁄², depending on the methodology that was used to calculate fracture toughness from the length of the median corner cracks. Elastic moduli, namely Young and shear moduli were determined using Resonance Ultrasound Spectroscopy (RUS). It was found that elastic moduli decreases with temperature in non-linear manner, with significant drop in the 300-600 °C temperature range, the same temperature range in which loss modulus determined by Dynamic Mechanical Analyzer exhibits frequency dependant peaks. The high loss modulus and significant drop in elastic moduli in that temperature regime is attributed to the relaxation of doping cation-oxygen vacancies clusters. The flexural strength in 4-point bending was measured at room temperature, 400 °C, 600 °C and 800 °C. and the results were analyzed using Weibull statistics. It was found that flexural strength changes with temperature in a sigmoidal way, with the minimum strength at around 600 °C. Non-linear decrease in strength with temperature can be traced back to the changes in elastic moduli that are caused predominately by relaxation of oxygen vacancies.
13

Optimal Sintering Temperature of Ceria-doped Scandia Stabilized Zirconia for Use in Solid Oxide Fuel Cells

Assuncao, Amanda K 01 January 2018 (has links)
Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. One such technology that is currently being researched, is the Solid Oxide Fuel Cell (SOFC). This is a relatively simple device that converts chemical energy into electrical energy with no harmful emissions. For these devices to work properly, they require an electrolyte material that has high ionic conductivity with good phase stability at a variety of temperatures. The research presented in this study will concentrate intensively on just one of the many candidates for SOFC electrolytes. 1 mol% CeO2 – 10 mol% Sc2O3 – 89 mol% ZrO2 manufactured by Treibacher Industries was analyzed to better understand its sintering properties, phase stability, and molecular structure. Sintering was performed at temperatures ranging from 900oC to 1600oC and the shrinkage, density and porosity were examined for each temperature. Raman Spectroscopy and X-Ray Powder Diffraction were also conducted for comparison with other known compositions to see if the powder undergoes any phase transitions or instability.
14

Development of new proton conducting materials for intermediate temperature fuel cells

aoxiang, Xiaoxiang January 2010 (has links)
The work in this thesis mainly focuses on the preparation and characterization of several phosphates and solid oxide systems with the aim of developing new proton conducting materials for intermediate temperature fuel cells (ITFCs). Soft chemical methods such as sol-gel methods and conventional solid state methods were applied for the synthesis of these materials. Aluminum phosphate obtained by a solution method is single phase and belongs to one of the Al(H₂PO₄)₃ allotropies with hexagonal symmetry. The material is stable up to 200°C and decomposes into Al(PO₃)₃ at a higher temperature. The electrical conductivity of pure Al(H₂PO₄)₃ is on the order of 10⁻⁶-10⁻⁷ S/cm, very close to the value for the known proton conductors AlH₃(PO₄)₂•3H₂O and AlH₂P₃O₁₀•2H₂O. Much higher conductivity is observed for samples containing even a trace amount of excess H₃PO₄. It is likely that the conduction path gradually changes from grain interior to the surface as the acid content increases. The conductivity of Al(H₂PO₄)₃-0.5H₃PO₄ exhibited a good stability over the measured 110 hours. Although tin pyrophosphate (SnP₂O₇) has been reported to show a significantly high conductivity (~10⁻² S/cm) at 250°C in various atmospheres, we observed large discrepancies in the electrical properties of SnP₂O₇ prepared by different methods. Using an excess amount of phosphorous in the synthetic procedure generally produces SnP₂O₇ with much higher conductivity (several orders of magnitude higher) than samples with stoichiometric Sn:P ratios in their synthetic procedure. Solid state ³¹P NMR confirmed the presence of residual phosphoric acid for samples with excess starting phosphorous. Transmission Electron Microscope (TEM) confirmed an amorphous layer covered the SnP₂O₇ granules which was probably phosphoric acid or condensed phases. Thereby, it is quite likely that the high conductivity of SnP₂O₇ results mainly from the contribution of the residual acid. The conductivity of these samples exhibited a good stability over the measured 80 hours. Based on the observations for SnP₂O₇, we developed a nano core-shell structure based on BPO₄ and P₂O₅ synthesised by solid state methods. The particle size of BPO₄ using this method varied between 10-20 nm depending on the content of P₂O₅. TEM confirmed the existence of an amorphous layer that is homogeneously distributed. The composite exhibits the highest conductivity of 8.8×10⁻² S/cm at 300°C in air for 20% extra P₂O₅ and demonstrates a good stability during the whole measured 110 hours. Polytetrafluoroethylene (PTFE) was introduced into the composites in order to increase malleability for fabrication. The conductivity and mechanical strength were optimized by adjusting the PTFE and P₂O₅ content. These organic-inorganic composites demonstrate much better stability at elevated temperature (250°C) over conventional SiC-H₃PO₄-PTFE composites which are common electrolytes for phosphoric acid fuel cells (PAFCs). Fuel cells based on BPO₄-H₃PO₄-PTFE composite as the electrolyte were investigated using pure H₂ and methanol as fuels. A maximum power density of 320 mW/cm² at a voltage of 0.31 V and a maximum current density of 1.9 A/cm² at 200°C were observed for H₂/O₂ fuel cells. A maximum power density of 40 mW/cm² and maximum current of 300 mA/cm² 275°C were observed when 3M methanol was used in the cell. Phosphoric acid was also introduced into materials with internal open structures such as phosphotungstic acid (H₃PW₁₂O₄₀) and heteropolyacid salt ((NH₄)₃PW₁₂O₄₀), for the purpose of acquiring additional connections. The hybrids obtained have a cubic symmetry with enlarged unit cell volume, probably due to the incorporation of phosphoric acid into the internal structures. Solid state ³¹P NMR performed on H₃PW₁₂O₄₀-xH₃PO₄ (x = 0-3) showed additional peaks at high acid content which could not assigned to phosphorus from the starting materials, suggesting a strong interaction between H₃PW₁₂O₄₀ and H₃PO₄. The conductivity of hybrids was improved significantly compared with samples without phosphoric acid. Fourier transform infrared spectra (FT-IR) suggest the existence of large amount of hydrogen bonds (OH••••O) that may responsible for the high conductivity. A H₂/O₂ fuel cell based on H₃PW₁₂O₄₀-H₃PO₄-PTFE exhibited a peak power density of 2.7 mW/cm² at 0.3 V in ambient temperature. Solid oxide proton conductors based on yttrium doped BaZrO₃ were investigated by introducing potassium or lanthanum at the A-sites. The materials were prepared by different methods and were obtained as a single phase with space group Pm-3m (221). The unit cell of these samples is slightly smaller than the undoped one. The upper limit of solid solution formation on the A-sites for potassium is between 5 ~ 10% as introducing more K results in the occurrence of a second phase or impurities such as YSZ (yttrium stabilized zirconium). K doped Barium zirconates showed an improved water uptake capability even with 5% K doping, whereas for La doped ones, water uptake is strongly dependent on particle size and synthetic history. The conductivity of K doped BaZrO₃ was improved by a factor of two (2×10⁻³ S/cm) at 600°C compared with undoped material. Fuel cells based on Pt/Ba₀₋₉₅K₀₋₀₅Zr₀₋₈₅Y₀₋₁₁Zn₀₋₀₄O[subscript(3-δ)]/Pt under humidified 5% H₂/air conditions gave a maximum power density 7.7 mWcm⁻² at 718°C and an interfacial resistance 4 Ωcm⁻². While for La doped samples, the conductivity was comparable with undoped ones; the benefits of introducing lanthanum at A-sites may not be so obvious as deficiency of barium is one factor that leads to the diminishing conductivity.
15

Advanced BaZrO3-BaCeO3 Based Proton Conductors Used for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs)

Bu, Junfu January 2015 (has links)
In this thesis, the focus is on studying BaZrO3-BaCeO3 based proton conductors due to that they represent very promising proton conductors to be used for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFCs). Here, dense BaZr0.5Ce0.3Y0.2O3-δ (BZCY532) ceramics were selected as the major studied materials. These ceramics were prepared by different sintering methods and doping strategies. Based on achieved results, the thesis work can simply be divided into the following parts: 1) An improved synthesis method, which included a water-based milling procedure followed by a freeze-drying post-processing, was presented. A lowered calcination and sintering temperature for a Hf0.7Y0.3O2-δ (YSH) compound was achieved. The value of the relative density in this work was higher than previously reported data. It is also concluded that this improved method can be used for mass-production of ceramics. 2) As the solid-state reactive sintering (SSRS) represent a cost-effective sintering method, the sintering behaviors of proton conductors BaZrxCe0.8-xLn0.2O3-δ (x = 0.8, 0.5, 0.1; Ln = Y, Sm, Gd, Dy) during the SSRS process were investigated. According to the obtained results, it was found that the sintering temperature will decrease, when the Ce content increases from 0 (BZCLn802) to 0.3 (BZCLn532) and 0.7 (BZCLn172). Moreover, the radii of the dopant ions similar to the radii of Zr4+ or Ce4+ ions show a better sinterability. This means that it is possible to obtain dense ceramics at a lower temperature. Moreover, the conductivities of dense BZCLn532 ceramics were determined. The conductivity data indicate that dense BZCY532 ceramics are good candidates as either oxygen ion conductors or proton conductors used for ITSOFCs. 3) The effect of NiO on the sintering behaviors, morphologies and conductivities of BZCY532 based electrolytes were systematically investigated. According to the achieved results, it can be concluded that the dense BZCY532B ceramics (NiO was added during ball-milling before a powder mixture calcination) show an enhanced oxygen and proton conductivity. Also, that BZCY532A (NiO was added after a powder mixture calcination) and BZCY532N (No NiO was added in the whole preparation procedures) showed lower values. In addition, dense BZCY532B and BZCY532N ceramics showed only small electronic conductivities, when the testing temperature was lower than 800 ℃. However, the BZCY532A ceramics revealed an obvious electronic conduction, when they were tested in the range of 600 ℃ to 800 ℃. Therefore, it is preferable to add the NiO powder during the BZCY532 powder preparation, which can lower the sintering temperature and also increase the conductivity. 4) Dense BZCY532 ceramics were successfully prepared by using the Spark Plasma Sintering (SPS) method at a temperature of 1350 ℃ with a holding time of 5 min. It was found that a lower sintering temperature (&lt; 1400 ℃) and a very fast cooling rate (&gt; 200 ℃/min) are two key parameters to prepare dense BZCY532 ceramics. These results confirm that the SPS technique represents a feasible and cost-effective sintering method to prepare dense Ce-containing BaZrO3-BaCeO3 based proton conductors. 5) Finally, a preliminary study for preparation of Ce0.8Sm0.2O2-δ (SDC) and BZCY532 basedcomposite electrolytes was carried out. The novel SDC-BZCY532 based composite electrolytes were prepared by using the powder mixing and co-sintering method. The sintering behaviors, morphologies and ionic conductivities of the composite electrolytes were investigated. The obtained results show that the composite electrolyte with a composition of 60SDC-40BZCY532 has the highest conductivity. In contrast, the composite electrolyte with a composition of 40SDC-60BZCY532 shows the lowest conductivity. In summary, the results show that BaZrO3-BaCeO3 based proton-conducting ceramic materials represent very promising materials for future ITSOFCs electrolyte applications. / <p>QC 20150423</p>

Page generated in 0.1376 seconds