61 |
TRPV1 regulates excitatory innervation of oriens lacunosum moleculare (OLM) neurons in the hippocampus to affect synaptic plasticityHurtado Zavala, Joaquin Isaac 13 April 2016 (has links)
No description available.
|
62 |
Consequences of synaptic plasticity at inhibitory synapses in mouse hippocampal area CA2 under normal and pathological conditions / Conséquences de la plasticité synaptique aux synapses inhibitrices de la région CA2 de l'hippocampe de souris, dans des conditions normales et pathologiquesNasrallah, Kaoutsar 23 November 2015 (has links)
L'hippocampe est une région du cerveau importante pour la formation de mémoire. Des études récentes ont montré que la zone CA2 de l'hippocampe, longtemps ignorée, joue un rôle clef dans certaines formes de mémoire et notamment dans la mémoire sociale. De plus, des études post-mortem ont révélé des altérations spécifiques à la région CA2 chez les patients schizophrènes. Cependant, l’implication des neurones de CA2 dans les circuits de l'hippocampe reste peu connu, tant dans des conditions physiologiques que pathologiques. En combinant pharmacologie, génétique et électrophysiologie sur tranches d’hippocampe de souris, nous avons étudié comment les neurones pyramidaux (NP) CA2 sont recrutés dans les circuits hippocampiques après des changements d’inhibition et comment le recrutement des NP CA2 pourrait moduler l’information sortant de l'hippocampe. D’autre part, nous avons examiné les altérations fonctionnelles de la zone CA2 dans le modèle murin Df(16)A+/- de la microdélétion 22q11.2, le facteur génétique de risque de schizophrénie le plus élevé. Dans la région CA2 de l’hippocampe, les synapses inhibitrices contrôle les afférences des collatérales de Schaeffer (CS) et expriment une dépression à long-terme (DLTi) unique qui dépendant des récepteurs delta-opioïdes (RDO). Contrairement aux synapses CS-CA1, les synapses excitatrices CS-CA2 n’expriment pas de potentialisation à long-terme après application des protocoles d'induction. Cependant, nous avons constaté que différents types d'activités induisent une augmentation durable de l’amplitude des potentiels post-synaptiques (PPS) évoqués aussi bien par une stimulation des CS que des afférences distales des NP CA2, et ceci via une modulation de la balance excitation/inhibition. Nous avons démontré que ces augmentations du rapport excitation/inhibition sont les conséquences directes de la DLTi RDO-dépendante. De plus, la DLTi permet le recrutement des NP CA2 par les NP CA3 alors qu’une inhibition intacte empêche complètement leur activation en réponse aux stimulations des CS. Par ailleurs, le recrutement des pyramides de CA2 par les CS après disinhibition activité-dépendante ajoute une composante polysynaptique (SC-CA2-CA1) au PPS monosynaptique (SC-CA1) dans les NP CA1 et augmente leur activité. De plus, l’inactivation des interneurones exprimant la parvalbumine à l’aide d’outils pharmacogénétiques, a montré que ces cellules inhibitrices contrôlent fortement l'amplitude du PPS et l’activité des NP CA2 en réponse à la stimulation des CS et qu’elles sont nécessaires à l'augmentation RDO-dépendante du rapport excitation/inhibition entre CA3 et CA2. Enfin, l'étude de la zone CA2 chez les souris Df(16)A+/- a révélé plusieurs modifications dépendantes de l'âge dont une réduction de l'inhibition, une altération de la plasticité du rapport excitation/inhibition entre CA3 et CA2 et une hyperpolarisation NP CA2. Ces modifications cellulaires peuvent expliquer les déficiences de mémoire sociale que nous observons chez les souris Df(16)A+/- adultes. L’ensemble de nos études a permis de mettre en évidence le rôle des neurones CA2 dans les circuits de l'hippocampe. Enfin pour conclure, nous postulons que le recrutement des neurones CA2 dans les réseaux neuronaux sous-tend des aspects particuliers de la fonction de l'hippocampe. / The hippocampus is a region of critical importance for memory formation. Recent studies have shown that the long-overlooked hippocampal region CA2 plays a role in certain forms of memory, including social recognition. Furthermore, post-mortem studies of schizophrenic patients have revealed specific changes in area CA2. As yet, the role of CA2 neurons in the hippocampal circuitry remains poorly understood under both normal physiological and pathological conditions. By combining pharmacology, mouse genetics and electrophysiology, we investigated how CA2 pyramidal neurons (PNs) could be recruited in hippocampal circuits in mice hippocampal slices following an activity-dependent change in the strength of their inhibitory inputs. We further investigated how subsequent recruitment of CA2 PNs could modulate hippocampal output. Moreover, we examined the functional alterations of area CA2 in the Df(16)A+/- mouse model of the 22q11.2 microdeletion, a spontaneous chromosomal deletion that is the highest known genetic risk factor for developing schizophrenia. In area CA2, inhibitory synapses exert a powerful control of Schaffer collateral (SC) inputs and undergo a unique long-term depression (iLTD) mediated by delta-opioid receptor (DOR) activation. Unlike SC-CA1 synapses, SC-CA2 excitatory synapses fail to express long-term potentiation after classical induction protocols. However, we found that different patterns of activity persistently increase both the SC and the distal input net excitatory drive onto CA2 PNs via a modulation of the balance between excitation and inhibition. We demonstrated that increases in the excitatory/inhibitory ratio are direct consequences of the DOR-mediated iLTD. Interestingly, we found that the inhibition in area CA2 completely preventing CA3 PNs to activate CA2 PNs, and following iLTD, SC stimulation allows CA2 PNs to fire action potentials. Moreover, the recruitment of CA2 PNs by SC intra-hippocampal inputs after their activity-dependent disinhibition adds a delayed SC-CA2-CA1 response to the SC-CA1 monosynaptic post-synaptic potential (PSP) in CA1 and increases CA1 PN activity. Furthermore, pharmaco-genetic silencing of parvalbumin-expressing interneurons revealed that these inhibitory cells control the PSP amplitude and the firing of CA2 PNs in response to SC stimulation and are necessary for the DOR-mediated increase in excitatory/inhibitory balance between CA3 and CA2. Finally, we found several age-dependent alterations in area CA2 in Df(16)A+/- mouse model of the 22q11.2 microdeletion. These included a reduction in inhibition, an impaired activity-dependent modulation of the excitatory drive between CA3 and CA2 and a more hyperpolarized CA2 PN resting potential. These cellular disruptions may provide a potential mechanism for the social memory impairment that we observe in Df(16)A+/- adult mice. Altogether, our studies highlight the role of CA2 neurons in hippocampal circuitry. To conclude, we postulate that the recruitment of CA2 neurons in neuronal networks underlies key aspects of hippocampal function.
|
63 |
Deconstructing Spinal Interneurons, one cell type at a timeGabitto, Mariano Ignacio January 2016 (has links)
Documenting the extent of cellular diversity is a critical step in defining the functional organization of the nervous system. In this context, we sought to develop statistical methods capable of revealing underlying cellular diversity given incomplete data sampling - a common problem in biological systems, where complete descriptions of cellular characteristics are rarely available. We devised a sparse Bayesian framework that infers cell type diversity from partial or incomplete transcription factor expression data. This framework appropriately handles estimation uncertainty, can incorporate multiple cellular characteristics, and can be used to optimize experimental design. We applied this framework to characterize a cardinal inhibitory population in the spinal cord.
Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. By using our Sparse Bayesian approach, we showed that V1 interneurons, a major inhibitory population that controls motor output, fractionate into diverse subsets on the basis of the expression of nineteen transcription factors. Transcriptionally defined subsets exhibit highly structured spatial distributions with mediolateral and dorsoventral positional biases. These distinctions in settling position are largely predictive of patterns of input from sensory and motor neurons, arguing that settling position is a determinant of inhibitory microcircuit organization. Finally, we extensively validated inferred cell types by direct experimental measurement and then, extend our Bayesian framework to full transcriptome technologies. Together, these findings provide insight into the diversity and organizational logic through which inhibitory microcircuits shape motor output.
|
64 |
Altered function of CCK-positive interneurons in mice over-expressing the schizophrenia risk gene neuregulin 1Kotzadimitriou, Dimitrios January 2016 (has links)
The Neuregulin 1 (NRG1)-ErbB4 signalling pathway is implicated in critical processes for the development and function of neuronal circuits. Post mortem studies have reported that elevated expression of NRG1 type 1 isoform is associated with schizophrenia. Importantly previous behavioural studies in mice that overexpress the NRG1 type 1 isoform (NRG1<sup>tg-type-I</sup>) have suggested a schizophrenia endophenotype including impairment in the hippocampus-dependent spatial working memory, prepulse inhibition (PPI) of the startle reflex and alterations in the gamma band rhythmogenesis This study aims to reveal the cellular targets of the NRG1-ErbB4 signalling pathway and putative alterations in the function of the hippocampal network in NRG1<sup>tg-type-I</sup> mice. Immunocytochemical analysis showed that the NRG1 receptor ErbB4 is predominantly localized in interneurons comprising parvalbumin positive (PV) and cholecystokinin (CCK) expressing cells. Comparison of the density of ErbB4-positive cells between the hippocampus of wild type (WT) and NRG1<sup>tg-type-I</sup> mice suggested that NRG1 over-expression resulted in decreased number of ErbB4 immunopositive hippocampal interneurons. This is consistent with the proposed role of the NRG1-ErbB4 signalling in the migration of GABAergic cells during neurodevelopment and with the NRG1-mediated internalisation of the ErbB4 receptors. CCK- positive cells are a major target of NRG1-ErbB4 signalling, and therefore the NMDA receptor and AMPA receptor components of glutamatergic transmission were analysed in this population of cells by performing whole cell recordings of evoked and miniature excitatory post synaptic currents. Glutamatergic neurotransmission in CCK-positive cells was found to be compromised in the hippocampus of NRG1<sup>tg-type-I</sup> mice. This change was attributed to hypofunction of NMDA receptors but not AMPA receptors post-synaptically. Next, the inhibitory output of CCK-positive cells to pyramidal cells was examined. Analysis of the optogenetically elicited inhibitory post synaptic currents (IPSCs) did not reveal any changes in the properties of the GABAergic synapse formed by these cells due to NRG1 over-expression Finally, the effects of this NMDA receptor hypofunction in the recurrent inhibition were analysed by performing whole cell recordings during the gamma relevant optogenetic entrainment of the hippocampal network. It was found that the disynaptic inhibition, a key synaptic interaction for the generation of gamma oscillations, depends on the NMDA receptors and was altered in the hippocampus of NRG1<sup>tg-type-I</sup> mice. Together these data point out a key modulatory role of the NRG1-ErbB4 signalling in the neurodevelopment of cortical microcircuits and a link between ErbB4 and NMDA receptor function with a possible association to schizophrenia pathogenesis.
|
65 |
The role of gamma-protocadherins in interneuron survival and circuit formation in the developing spinal cordPrasad, Tuhina 01 December 2009 (has links)
Protocadherins (Pcdhs) are a large family of adhesion molecules which have structure similar to that of classical cadherins. About 60 Pcdh genes are organized into three clusters (-á,- â and- ã), which are arranged contiguously on a single chromosome in mammals. Mice in which the 22-gene Pcdh- ã locus has been deleted die within a few hours of birth and show defects in movement and reflexes, extensive neurodegeneration in the spinal cord, and loss of synapses. Further studies have shown that loss of ã-Pcdhs has a primary effect on the formation or maintenance of synapses that can be dissociated from its role in cell survival. Extensive apoptotic cell death observed during the late embryonic development period in the spinal cord of the Pcdh- ã del/del mutant mice is confined to molecularly distinct populations of spinal interneurons. Analysis of cell death patterns during development of spinal cords from wild-type, the Pcdh- ã del/del and Bax -/- mice in which cell death is blocked due to deletion of a proapoptotic protein, confirmed that loss of ã-Pcdhs exacerbates a previously undocumented normal developmental pattern of spinal interneuron apoptosis. Restricted disruption of the Pcdh- ã gene cluster within specific neuronal populations suggested that ã-Pcdhs can control neuronal survival in a non-cell autonomous manner. Loss of ã-Pcdhs also resulted in an aberrant pattern of 1a proprioceptive sensory afferent (1aPSA) terminals in the spinal cord. In Pcdh- ã del/del mice the area occupied by 1aPSA terminals per motor neuron increased by 150% over the control with a corresponding reduction of 30% in the area occupied by 1aPSA terminals on the ventral interneurons. Further analysis in the Pcdh- ã del/del; Bax-/- double mutants, as well as in mouse lines in which Pcdh- ã gene cluster disruption was confined to specific neuronal subpopulations, suggested that this aberrant pattern was a result of both the increased loss of ventral interneurons in mutants, as well as a cell autonomous requirement of ã-Pcdhs in the 1aPSA and their intermediate target ventral interneurons. These studies provide evidence that the ã-Pcdhs mediate homophilic interactions that are important for the formation of multiple neuronal circuits, and are critical molecules in the regulation of interneuron survival and CNS development.
|
66 |
Effects of Mammalian Target of Rapamycin Inhibition on Circuitry Changes in the Dentate Gyrus of Mice after Focal Brain InjuryButler, Corwin R. 01 January 2016 (has links)
Post-traumatic epilepsy is a common outcome of severe traumatic brain injury (TBI). The development of spontaneous seizures after traumatic brain injury generally follows a latent period of little to no symptoms. The series of events occurring in this latent period are not well understood. Additionally, there is no current treatment to prevent the development of epilepsy after TBI (i.e. antiepileptogenics). One cell signaling pathway activated in models of TBI and in models of epilepsy is the mammalian target of rapamycin (mTOR). mTOR activity is sustained for weeks after the initial insult in models of TBI, and the inhibition of mTOR using rapamycin has shown promising pre-clinical outcomes in rodent models. This makes rapamycin an ideal therapeutic to test various outcomes associated with epileptogenesis after TBI. The results from this study suggest that rapamycin treatment after controlled cortical impact reduces aberrant axonal sprouting of ipsilateral dentate granule cells, prevents increased neurogenesis in the subgranular zone, and differentially alters phasic and tonic inhibition in dentate granule cells. However, rapamycin treatment did not prevent all forms of axon sprouting in the dentate gyrus or cell loss in selected regions of the hippocampus. Collectively these results support a role of mTOR activity in both excitatory and inhibitory plasticity in the mouse dentate gyrus after TBI.
|
67 |
Computer Modelling of Neuronal Interactions in the StriatumHjorth, Johannes January 2009 (has links)
Large parts of the cortex and the thalamus project into the striatum,which serves as the input stage of the basal ganglia. Information isintegrated in the striatal neural network and then passed on, via themedium spiny (MS) projection neurons, to the output stages of thebasal ganglia. In addition to the MS neurons there are also severaltypes of interneurons in the striatum, such as the fast spiking (FS)interneurons. I focused my research on the FS neurons, which formstrong inhibitory synapses onto the MS neurons. These striatal FSneurons are sparsely connected by electrical synapses (gap junctions),which are commonly presumed to synchronise their activity.Computational modelling with the GENESIS simulator was used toinvestigate the effect of gap junctions on a network of synapticallydriven striatal FS neurons. The simulations predicted a reduction infiring frequency dependent on the correlation between synaptic inputsto the neighbouring neurons, but only a slight synchronisation. Thegap junction effects on modelled FS neurons showing sub-thresholdoscillations and stuttering behaviour confirm these results andfurther indicate that hyperpolarising inputs might regulate the onsetof stuttering.The interactions between MS and FS neurons were investigated byincluding a computer model of the MS neuron. The hypothesis was thatdistal GABAergic input would lower the amplitude of back propagatingaction potentials, thereby reducing the calcium influx in thedendrites. The model verified this and further predicted that proximalGABAergic input controls spike timing, but not the amplitude ofdendritic calcium influx after initiation.Connecting models of neurons written in different simulators intonetworks raised technical problems which were resolved by integratingthe simulators within the MUSIC framework. This thesis discusses theissues encountered by using this implementation and gives instructionsfor modifying MOOSE scripts to use MUSIC and provides guidelines forachieving compatibility between MUSIC and other simulators.This work sheds light on the interactions between striatal FS and MSneurons. The quantitative results presented could be used to developa large scale striatal network model in the future, which would beapplicable to both the healthy and pathological striatum. / QC 20100720
|
68 |
Recurrent inhibitory network among cholinergic inerneurons of the striatumSullivan, Matthew Alexander 08 November 2012 (has links)
The striatum is the initial input nuclei of the basal ganglia, and it serves as an integral processing center for action selection and sensorimotor learning. Glutamatergic projections from the cortex and thalamus converge with dense dopaminergic axons from the midbrain to provide the primary inputs to the striatum. Striatal output is then relayed to downstream basal ganglia nuclei by GABAergic medium – sized spiny neurons, which comprise at least 95% of the population of neurons in the striatum. The remaining population of local circuit neurons is dedicated to regulating the activity of spiny projection neurons, and although spiny neurons form a weak lateral inhibitory network among themselves via local axon collaterals, feedforward modulation exerts more powerful control over spiny neuron excitability. Of the striatal interneurons, only one class is not GABAergic. These neurons are cholinergic and correspond to the tonically active neurons (TANs) recorded in vivo, which respond to specific environmental stimuli with a transient depression, or pause, of tonic firing. Striatal cholinergic interneurons account for less than 2 % of the striatal neuronal population, yet their axons form an extensive and complex network that permeates the entire striatum and significantly shapes striatal output by acting at numerous targets via varied receptor types. Indeed, the persistent level of ambient striatal acetylcholine as well as changes to that basal acetylcholine level underlie the major mechanisms of cholinergic signaling in the striatum, however regulation of this system by the local striatal microcircuitry is not well understood. This dissertation finds that activation of intrastriatal cholinergic fibers elicits polysynaptic GABAA inhibitory postsynaptic currents (IPSCs) in cholinergic interneurons recorded in brain slices. Excitation of striatal GABAergic neurons via nicotinic acetylcholine receptors (nAChRs) mediates this polysynaptic inhibition in a manner independent of dopamine. Moreover, activation of a single cholinergic interneuron is capable of eliciting polysynaptic GABAA IPSCs onto itself and nearby cholinergic interneurons. These findings provide an important insight into the striatal microcircuitry controlling cholinergic neuron excitability. / text
|
69 |
Schichtenspezifische Charakterisierung der VIPcre/tdTomato-Mauslinie mittels neurochemischer Marker / Layer-specific characterization of the VIPcre/tdTomato mouse with neurochemical markersScheuer, Bianca 17 August 2015 (has links)
Die Neurone des Neokortex lassen sich in exzitatorische und inhibitorische Neurone unterteilen. Bei den inhibitorischen Neuronen, die 20-30% der Neurone ausmachen, handelt es sich um GABA freisetzende Interneurone, die anhand ihrer morphologischen, elektrophysiologischen und molekularen Merkmale voneinander unterschieden werden können. Man unterscheidet drei große Gruppen von GABAergen Interneuronen, die Parvalbumin (PV)-exprimierenden, die Somatostatin (SOM)-exprimierenden und die ionotropen Serotonin-Rezeptor 5HT3a-exprimierenden Interneurone. Die 5HT3a-Rezeptor-exprimierenden Interneurone stellen eine sehr heterogene Gruppe dar und bestehen zu 40% aus vasoaktives intestinales Polypeptid (VIP)-exprimierenden Interneuronen.
Für die vorliegende Studie wurde die transgene VIPcre/tdTomato-Maus verwendet, die mit Hilfe der Cre/loxP-Technik generiert wurde. In dieser Maus sollten VIP-exprimierende Zellen mit dem fluoreszenten tdTomato-Protein markiert sein.
Ziel der vorliegenden Arbeit war es, die VIP-exprimierenden Neurone im somatosensorischen Kortex (Barrel-Kortex) mittels Immunhistochemie und Fluoreszenz-in-situ-Hybridisierung neurochemisch zu charakterisieren. Dafür wurden die Proteine vasoaktives intestinales Polypeptid, Somatostatin, Parvalbumin, Glutamatdecarboxylase (GAD 67) und der vesikuläre Glutamattransporter 1 (VGLUT1) als zu identifizierende molekulare Bestandteile genutzt. Ferner konnten Aussagen über die Zelldichte und Zellverteilung von VIP/tdTomato-positiven Zellen in den Schichten I-VI des Barrel-Kortex getroffen werden, um eine schichtenspezifische Charakterisierung der VIPcre/tdTomato-Maus durchzuführen. Außerdem wurde nach möglichen Kolokalisationen zwischen VIP und SOM und VIP und PV gesucht. Durch den Einsatz der Sonden Gad1 und Vglut1 konnten Rückschlüsse auf die exzitatorischen bzw. inhibitorischen Eigenschaften von VIP-exprimierenden Interneuronen gezogen werden.
Durch den Einsatz zweier verschiedener VIP-Antikörper und einer Vip-Sonde konnte nachgewiesen werden, dass es sich bei den tdTomato-fluoreszenten Zellen tatsächlich um VIP-exprimierende Interneurone handelt. Zwischen den VIP/tdTomato-positiven Zellen und dem PV-Antikörper bzw. der Pvalb-Sonde wurde niemals eine Kolokalisation nachgewiesen. Für den SOM-Antikörper bzw. die Sst-Sonde konnte nur eine ganz geringe Anzahl an Kolokalisationen mit den VIP/tdTomato-Zellen gezeigt werden. Dadurch bestätigt sich, dass es sich bei der VIPcre/tdTomato-Maus um ein verlässliches Mausmodell zur Untersuchung von VIP-exprimierenden Interneuronen handelt. Die Vglut1-Sonde hatte niemals eine VIP/tdTomato-Zelle markiert, wodurch sich exzitatorische Eigenschaften der VIP-Zellen nicht nachweisen ließen.
Hingegen markierte die Gad1-Sonde den Großteil aller VIP/tdTomato-Zellen, wodurch sich bestätigen lässt, dass es sich bei den VIP-exprimierenden Interneuronen um inhibitorische GABAerge Interneurone handelt.
Die größte Population an GABAergen Interneuronen in der VIPcre/tdTomato-Maus stellen die PV-exprimierenden Interneurone dar. In den Schichten IV und Vb wurden die meisten PV-positiven Zellen nachgewiesen. Die SOM-exprimierenden Interneurone stellen die zweitgrößte Zellpopulation dar. Die meisten SOM-positiven Zellen befinden sich in den neokortikalen Schichten Vb und VI. Bei den VIP-exprimierenden Interneuronen konnte die größte Anzahl an Zellen in Schicht II/III gefunden werden.
|
70 |
Cholinergic interneurons and synaptic reorganization within the nucleus accumbens shell and core potential neural substrates underlying drug addiction /Berlanga, Monica Lisa. January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
Page generated in 0.0537 seconds