• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 23
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 149
  • 37
  • 32
  • 27
  • 25
  • 25
  • 21
  • 21
  • 19
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Postnatal Development of the Striatal Cholinergic Interneuron

McGuirt, Avery Fisher January 2022 (has links)
The early postnatal period is marked by the rapid acquisition of sensorimotor processing capabilities. Initially responding to a limited set of environmental stimuli with a restricted repertoire of behaviors, mammals exhibit a remarkable proliferation of sensorimotor abilities in the early postnatal period. Central to action selection, reinforcement, and contingency learning are a subcortical set of evolutionarily conserved nuclei called the basal ganglia. The striatum, which is the primary input nucleus of the basal ganglia, receives afferent innervation from throughout the CNS. Its projection neurons (SPNs) integrate these diverse inputs, regulating movement and encoding salient cue-outcome contingencies. Here, using electrophysiological, electrochemical, imaging, and behavioral approaches in mice, I will explore the postnatal maturation of the striatal cholinergic interneuron (ChI), a critical modulator of dopamine signaling, afferent excitation, and SPN excitability. In Chapter 1, I will set the stage for this exploration by reviewing the current literature on striatal postnatal development, including cellular physiology, axonal elaboration and synapse formation, and plasticity expression. I will survey striatal deficits observed in clinical neurodevelopmental conditions such as autism, ADHD, tic disorders, and substance use disorders. I will additionally summarize evidence that the striatum is uniquely vulnerable to physiological and immunological insult, as well as early life adversity. In Chapter 2, I turn my focus specifically to the striatal ChI, uncovering fundamental cell-intrinsic changes that occur postnatally in this population. I will also elaborate on the postnatal maturation of dopamine release properties and regulation thereof by cholinergic signaling from the ChI. In Chapter 3, I investigate the circuit connectivity and circuit-driven firing dynamics of ChIs as they mature postnatally. I utilize a brain slice preparation retaining thalmostriatal afferents in order to assay the ChI pause, a synchronized transient quiescence in ChIs thought to facilitate cue learning and behavioral flexibility. I find that the ChI pause is refined postnatally, dependent on developmental changes in thalamic input strength and the cell- intrinsic expression of specific ionic conductances. Finally, in Chapter 4, I present preliminary evidence that ChI circuit maturation as defined in preceding chapters is delayed by chronic stress exposure postnatally. Following the maternal separation model of early life stress, ChI intrinsic characteristics mature normally, but they retain heightened thalamic innervation and thalamus-driven pause expression.
82

Thalamocortical Innervation of GABAergic Interneurons in Mouse Primary Vibrissal Somatosensory Cortex

Feyerabend, Michael 03 December 2019 (has links)
No description available.
83

Postnatal development of excitatory and inhibitory prefrontal cortical circuits and their disruption in autism

Trutzer, Iris Margalit 07 October 2019 (has links)
The prefrontal cortices, in particular lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC), have been implicated in top-down control of attention switching and behavioral flexibility. These cortices and their networks are disrupted in autism, a condition in which diverse behaviors such as social communication and attention control are dysregulated. However, little is known about the typical development of these cortical areas or the ways in which this process is altered in neurodevelopmental disorders. In order to identify changes that could affect the local processing of signals transmitted by the short-range pathways connecting the ACC and LPFC I assessed developmental changes in the distinct cortical layers, which send and receive different pathways and have unique inhibitory microenvironments that dictate excitatory-inhibitory balance. Normative developmental trends were compared with those seen in individuals with autism to identify changes that may contribute to symptoms of attention dysfunction. Unbiased quantitative methods were used to study overall neuron density, the density of inhibitory neurons labeled by the calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV), and the density, size, and trajectory of myelinated axons in the individual cortical layers in children and adults with and without a diagnosis of autism. There was a reduction in neuron density and an increase in the density of myelinated axons in both areas during neurotypical development. Axons in layers 1-3 of LPFC were disorganized in autism, with increased variability in the trajectory of axons in children and a decrease in the proportion of thin axons in adults. These findings were most significant in layer 1, the ultimate feedback-receiving layer in the cortex. While there were no differences in neuron populations between cohorts in children, in adults with autism there was a significant reduction in the density of CR-expressing neurons in LPFC layers 2-6 and a significant increase in the density of PV-expressing neurons in ACC layers 5-6. In autism, these findings suggest that dysregulation of the normal development of axonal networks, seen in children, may induce compensatory developmental changes in cell and axon populations in adults that could be connected to attention dysregulation. / 2021-10-07T00:00:00Z
84

Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells / ヒト多能性幹細胞からの背側、中間および腹側三次元脊髄組織の誘導

Ogura, Takenori 23 January 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21452号 / 医博第4419号 / 新制||医||1032(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 髙橋 良輔, 教授 伊佐 正 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
85

Expression and Function of Alpha3 and Beta2 Neuronal Nicotinic Acetylcholine Receptor Subunits in HEK-293 Cells

Steinhafel, Nathan W. 08 December 2006 (has links) (PDF)
Single-cell real-time quantitative RT-PCR was used to characterize the mRNA expression of rat neuronal nicotinic acetylcholine receptor (nAChR) subunits α3 and β2 in CA1 hippocampus stratum radiatum and stratum oriens interneurons. α3β2 co-expression was detected in 43% of interneurons analyzed. The nAChR subtype α3β2 was transiently expressed in cells derived from the human embryonic kidney cell line 293 at mRNA levels found in the CA1. The functional properties of α3β2 in HEK-293 cells were characterized by whole-cell patch clamping using acetylcholine (ACh) as an agonist. The kinetics of α3β2 channels were further analyzed by altering the level of α3 DNA transfected into HEK-293 cells. Varying the α3 concentration by more than 100,000 fold did not significantly alter the majority of the kinetics; the 10%-90% rise-time was the main characteristic found to be significantly different. A decrease in α3 concentration illustrated a significant increase in rise time. This and future studies will further our understanding of the extensive role neuronal nAChRs play in modulating hippocampal activity and consequently influencing cognition and memory.
86

Differential Expression and Functional Characterization of Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptors

Mizukawa, John Hideo 17 July 2008 (has links) (PDF)
Neuronal nicotinic acetylcholine receptors (nAChRs) are expressed in both the periperhal and central nervous systems, and are involved in pre-, post-, and non-synaptic control of neuronal activation. In the brain, these receptors play an important role in a variety of physiological processes such as cognition, development, learning, and memory formation. Malfunction of these receptors have been implicated in neurodegenerative diseases like Alzheimer's disease (AD), schizophrenia, and Parkinson's disease. To date, 17 different nAChR subunits, including α2-α7 and β2-β4, have been cloned that can form homo- and/or hetero-pentameric ionotropic receptors. The unique combinations of subunit pentamers manifest in distinct functional receptors. Using single-cell real-time quantitative RT-PCR, we identified the individual expression rates and co-expression rates of the different nAChR subunits in rat CA1 hippocampal interneurons in efforts to characterize functional receptors involved in learning and memory. The two-way combination of subunits with highest expression in hippocampal interneurons was α3β2. Moreover, this combination was expressed in ratios near 1:3 or 3:1 α3 to β2 respectively. To investigate the functionality of α3β2 receptors in different stoichiometries, we injected human α3 and rat β2 subunit mRNA in 1:3, 1:1, and 3:1 ratios into Xenopus laevis oocytes for expression. Two-electrode voltage clamp was then performed with the application of different concentrations of ACh to produce full dose-response curves and channel kinetics data. Distinct α3β2 functional channels were identified from the different expression ratios based on significant differences in channel kinetics (i.e.- peak current rise times, peak current decay times, steady state current in forced desensitization) Dose-response curves produced no significant difference in EC50 values in the different expression groups. However, there was a trend to greater agonist sensitivity with increased α3 expression relative to β2. α3β2 receptors were further characterized through forced desensitization of the receptors and generation of IV plots. The findings from this study elucidate the neuronal nAChR subunit combinations that form functional channels in hippocampal interneurons.
87

The Role of Cholinergic Interneurons in Opioid Reward and Aversion

Monroe, Sean 06 July 2023 (has links)
No description available.
88

Unbiased Multidimensional Analysis Reveals Novel Principles of Cortical Interneuron Synaptic Organization

Dummer, Patrick Daniel January 2024 (has links)
Neurons display exquisite specificity in synaptic connectivity, but we lack a complete under-standing of neuronal connectivity and the rules that govern it. A major impediment to addressing this question lies in the vast diversity of neurons, the small size and large number of synapses formed by any given neuron over a wide territory, and the need to study these connections in intact tissue. We therefore developed an image-based tool to assess synaptic specificity in tissue sections and dissociated culture. We focused on three interneuron subpopulations that target distinct subcellular regions of the post-synaptic cell: soma-targeting basket cells (BCs), axon initial segment (AlS)-targeting chandelier cells (ChCs), and distal dendrite-targeting somatostatin cells (SstCs). Using mouse dissociated cortical culture as a starting point, we built a machine learning (ML) based image processing and analysis pipeline to classify individual presynaptic boutons at scale. Supervised ML classification revealed similar subcellular targeting profiles for these interneuron populations in slice and culture, indicating that targeting is primarily regulated by cell intrinsic programs. We also observed a remarkable target-dependent laminar organization in vivo. An unsupervised ML analysis using the same input data not only identified the same three canonical targeting classes, but also revealed that these classes are comprised of multiple subpopulations. In slice, these synaptic subpopulations displayed distinct laminar or-ganization. In dissociated culture, two soma-targeting synaptic subpopulations mapped to target cells with different cellular profiles. The six dendrite-targeting synaptic subpopulations were found at increasing distances from target soma, suggesting molecularly distinct proximal, medial, and distal dendritic compartments in culture. Tracking subtype targeting across axonal branches of individual neurons indicated that SstCs and BCs utilize distinct targeting strategies in culture that accord with established findings in vivo. In sum, our synaptic analysis pipeline revealed novel synaptic subpopulations in interneurons. Further analysis uncovered novel aspects of interneuron synaptic biology that, remarkably, are retained in culture.
89

Role of Syngap1 in GABAergic Circuit Development and Function

Jadhav, Vidya 04 1900 (has links)
Le gène SYNGAP1 code pour la protéine Synaptic Ras GTPase-Activating protein 1 et est essentiel pour le développement normal de la fonction synaptique et de la cognition. Les mutations dans le gène SYNGAP1 qui provoquent la perte d'une seule copie du gène (haplo-insuffisance) sont associées à un handicap intellectuel, comorbide avec un trouble du spectre autistique et l'épilepsie. Les individus présentant des mutations SYNGAP1 montrent un large éventail de caractéristiques phénotypiques telles que l'encéphalopathie épileptique, des déficits moteurs, des déficits sensoriels et d'autres anomalies comportementales et cognitives. De manière intéressante, les modèles de souris transgéniques Syngap1 haplo-insuffisantes reproduisent les déficits comportementaux et cognitifs observés chez les individus SYNGAP1. Plusieurs études se sont concentrées sur le rôle de Syngap1 dans les synapses glutamatergiques, révélant qu'il est un régulateur négatif de Ras, impliqué dans le trafic des récepteurs AMPA au niveau de la membrane postsynaptique des neurones excitateurs. Syngap1 est fortement impliqué dans la maturation des épines dendritiques et dans la régulation de la plasticité synaptique et de l'homéostasie neuronale. Toutefois, le rôle de Syngap1 dans les neurones GABAergiques est moins bien exploré. Les interneurones GABAergiques forment une population hétérogène, les sous-types dominants étant les interneurones exprimant la Parvalbumine (PV) et la Somatostatine (SST) dérivés de l'éminence ganglionnaire médiane (MGE). Des études récentes ont révélé le rôle multifacette de Syngap1 dans les interneurones GABAergiques, notamment son implication dans la migration des interneurones, le branchement axonal des cellules PV et la régulation des synapses inhibitrices sur les somas postsynaptiques. Cependant, si et comment Syngap1 affecte les types cellulaires spécifiques d’interneurones dérivés de MGE tels que les interneurones PV et/ou SST n’est pas connu, et cela est exploré dans ma thèse. De plus, nous avons exploré si et comment l'haplo-insuffisance de Syngap1 induite pré- ou post-natalement spécifiquement dans les sous-types d'interneurones PV et SST contribue aux modalités comportementales, cognitives et sensorielles chez les souris adultes. Des stratégies génétiques ont été utilisées pour induire l'haplo-insuffisance de Syngap1, 1. pré-natalement dans les cellules PV et SST en utilisant la lignée de souris Nkx2.1_Cre, 2. pré-natalement dans les cellules SST en utilisant la ligne de souris SST_Cre et 3. post-natalement dans les cellules PV en utilisant la lignée de souris PV_Cre. Nous avons constaté que la réduction de Syngap1 pré-natalement dans les cellules PV et SST (en utilisant le promoteur Nkx2.1 pour cibler les interneurones dérivés de MGE) influence le traitement sensoriel auditif, en augmentant notamment les oscillations gamma de base, en affectant l'entraînement auditif et en échouant à s'habituer aux sons répétitifs. De plus, ces souris présentent des déficits de comportement social et une flexibilité cognitive altérée dans le comportement d'extinction de la peur. De telles altérations du traitement sensoriel, ainsi que des déficits comportementaux et cognitifs, n'ont pas été observés observés lorsque Syngap1 a été supprimé dans les cellules SST prénatales (en utilisant le promoteur SST). La suppression postnatale de Syngap1 dans les cellules PV montre quant à elle une habituation auditive accrue. Cependant, ces souris transgéniques ne présentent aucun déficit de comportement social ou d'extinction de la peur. Ces résultats suggèrent que les cellules PV pré- et/ou péri-natales sont particulièrement vulnérables à l'haplo-insuffisance de Syngap1 pendant une fenêtre temporelle sensible précoce lors du développement cérébral chez la souris. Alors que des modèles de souris conditionnelles spécifiques aident à comprendre la fonction biologique fondamentale de Syngap1, ils n'englobent pas la complexité du trouble génétique causé par SYNGAP1-ID. Nous avons donc étendu notre étude pour comprendre si les cellules PV sont altérées dans un modèle murin d'haplo-insuffisance germinale de Syngap1. En raison de leur innervation unique du soma et des dendrites proximales de leurs cibles postsynaptiques, les cellules PV influencent fortement l'activité du réseau et sont impliquées dans des fonctions cognitives supérieures telles que l'attention sélective, la mémoire de travail et la flexibilité cognitive, en particulier dans le cortex préfrontal (PFC). Nous avons étudié la connectivité synaptique des cellules PV et avons constaté qu'elles reçoivent des entrées excitatrices réduites dans les cortex préfrontal et auditif adultes. En parallèle, nous avons montré une connectivité réduite des cellules PV sur les cellules excitatrices avec moins de recrutement dans le PFC des souris adultes. Les souris transgéniques germinales présentent également des déficits de flexibilité cognitive (comme dans le comportement d'extinction de la peur) et dans l'apprentissage de la peur contextuelle. Ces résultats suggèrent un déséquilibre global entre l'excitation et l'inhibition dû à des altérations dans la connectivité des cellules PV. Nos études explorent donc le rôle de Syngap1 dans des lignées transgéniques haplo-insuffisantes conditionnelles et germinales en se concentrant sur des types cellulaires GABAergiques distincts (cellules PV et/ou SST), et montrent que les déficits des cellules PV, pendant une fenêtre de développement précoce, sont un facteur prédominant contribuant à la physiopathologie sous-jacente des mutations de Syngap1. Une meilleure compréhension du rôle de Syngap1 dans différents types cellulaires et stades de développement aidera à concevoir des stratégies d'intervention thérapeutique optimales. / SYNGAP1 gene encodes for the Synaptic Ras GTPase-Activating protein 1, and is critical for the normal development of synaptic function and cognition. Mutations in SYNGAP1 gene that cause loss of single copy of the gene (haploinsufficiency) are associated with intellectual disability, comorbid with autism spectrum disorder and epilepsy. Individuals with SYNGAP1 mutations show a broad spectrum of phenotypic features such as epileptic encephalopathy, motor deficits, sensory deficits and other behavioral and cognitive abnormalities. Interestingly, transgenic Syngap1 haploinsufficient mouse models phenocopy the behavioral and cognitive deficits as in SYNGAP1 individuals. Several studies have focused on the role of Syngap1 in glutamatergic synapses and revealed it to be a negative regulator of Ras, involved in the trafficking of AMPA receptors at the postsynaptic membrane of excitatory neurons. Syngap1 is strongly implicated in dendritic spine maturation and in regulating synaptic plasticity and neuronal homeostasis. The role of Syngap1 in GABAergic neurons however is less well explored. GABAergic interneurons form a heterogenous population, the dominant subtypes being the Parvalbumin (PV) and Somatostatin (SST) expressing interneurons derived from Medial Ganglionic Eminence (MGE). Recent studies have divulged the multi-faceted role of Syngap1 in GABAergic interneurons such as its involvement with interneuron migration, PV cell axonal branching, and regulation of inhibitory synapses onto postsynaptic somata. However, whether and how Syngap1 affects specific MGE-derived interneuron cell types such as PV and/or SST interneurons is unknown and explored in my thesis. Further, we explored whether and how Syngap1 haploinsufficiency induced either pre- or postnatally specifically in PV and SST interneuron subtypes, contributes to behavioral, cognitive and sensory related modalities in adult mice. Genetic strategies were used to induce Syngap1 haploinsufficiency, 1. prenatally in PV and SST cells using the Nkx2.1_Cre driver line, 2. prenatally in SST cells using SST_Cre driver line and 3. postnatally in PV cells using the PV_Cre driver line. We found that reduction of Syngap1 prenatally in both PV and SST cells (using the Nkx2.1 promoter to target MGE-derived interneurons) influences auditory sensory processing, in particular increasing the baseline gamma oscillations, affecting auditory entrainment and failing to habituate to repetitive sounds. In addition, these mice show deficits in social behavior and impaired cognitive flexibility in fear extinction behavior. Such sensory processing alterations, as well as behavioral and cognitive deficits were not observed when Syngap1 was deleted in prenatal SST cells (using the SST promoter). Postnatal deletion of Syngap1 in PV cells in turn showed increased auditory habituation, however these transgenic mice show no deficits in either social or fear extinction behavior. These results suggest that pre- and/or perinatal PV cells are particularly vulnerable to Syngap1 haploinsufficiency at an early sensitive time window during mouse brain development. While specific conditional mouse models help in understanding the fundamental biological function of the Syngap1, they do not encompass the complexity of the genetic disorder caused in SYNGAP1-ID. We therefore extended our study to understand whether PV cells are altered in a mouse model of germline Syngap1 haploinsufficiency. Due to their unique innervation of the soma and proximal dendrites of their postsynaptic targets, PV cells strongly influence network activity and are involved in higher cognitive functions such as selective attention, working memory and cognitive flexibility particularly in the prefrontal cortex (PFC). We investigated PV cell synaptic connectivity and found that they receive reduced excitatory inputs in the adult prefrontal and auditory cortex. In parallel, we showed reduced PV connectivity onto excitatory cells with less recruitment in the PFC of adult mice. The germline transgenic mice also showed deficits in cognitive flexibility (such as in fear extinction behavior) and cued contextual fear conditioning. These results suggest an overall E/I imbalance due to alterations in PV cell connectivity. Our studies therefore explore the role of Syngap1 in both conditional and germline haploinsufficient transgenic lines focusing on distinct GABAergic cell types (PV and/or SST cells), and shows that PV cell deficits, during an early developmental window, is a predominant contributing factor to the pathophysiology underlying Syngap1 mutations. A better understanding of the role of Syngap1 in different cell types and developmental stages will help in designing optimal therapeutic intervention strategies.
90

The Vesicular Glutamate Transporter type three in the nucleus accumbens and the regulation of reward and cocaine intake / Le transporteur vésiculaire du glutamate type 3 dans le noyau accumbens, la régulation de la récompense et la prise de cocaïne

Sakae, Diana Yae 11 April 2014 (has links)
L'addiction est un comportement compulsif de recherche et de prise de drogues alternant des phases d'abstinence et de rechute malgré les conséquences négatives sur la vie de l'individu. Les êtres humains ne sont pas égaux devant l'addiction et les mécanismes moléculaires sous jacents sont encore mal compris. De nombreuses structures cérébrales, telles que l'aire tegmentale ventrale (VTA), le cortex préfrontal ou l'amygdale convergent sur le noyaux accumbens (NAc) pour réguler les circuits de la " récompense ". Les neurones GABAergiques épineux de taille moyenne (MSN) sont à la fois la voie d'entrée et de sortie majeure du NAc. Les MSNs sont régulés de façon dynamique par les fibres dopaminergiques provenant de la VTA ainsi que par les interneurones cholinergiques locaux (TANs). La destruction sélective des TANs entraine une importante modification des propriétés renforçantes des psychostimulants tel que la cocaïne. En 2002 nous avons découvert que, de façon surprenante, ces neurones expriment à la fois le transporteur vésiculaire de l'acétylcholine (VAChT) et le transporteur vésiculaire du glutamate de type 3 (VGLUT3). Plus récemment nous avons établi que VGLUT3 augmentait le stockage vésiculaire ainsi que la libération d'acétylcholine (ACh) par un mécanisme que nous avons appelé " synergie vésiculaire ". De plus, il a été observé que VGLUT3 confère aux TANs la capacité d'utiliser le glutamate aussi bien qu'avec l'ACh pour communiquer. De façon surprenante, des souris ayant perdu la capacité de libérer l'ACh dans le NAc ne présente que très peu d'altération de leurs réponses comportementales à la cocaïne. Ce résultat suggère que l'ACh n'est pas indispensable à la régulation des comportements de « récompense ». 1.2 Afin de déterminer le rôle de la signalisation VGLUT3-dépendante par les TANs nous avons utilisé une souris n’exprimant plus VGLUT3. Au cours de cette thèse j’ai pu établir que l’absence de VGLUT3 exacerbe les effets comportementaux induit par la cocaïne. Il semble donc que les TANs utilisent l’ACh ou le glutamate pour réguler différentiellement la libération de DA. Nous avons des résultats préliminaires suggérant que le glutamate libéré par les TANs va activer des mGluR qui exercent un contrôle inhibiteur sur la libération de DA. De plus j’ai observé que l’augmentation de libération de DA chez les souris VGLUT3-KO entraine une activation des cascade de signalisation DR1-dépendantes. De plus les MSNs du NAc des souris VGLUT3-KO présentent des augmentations morphologiques et synaptiques de l’activité glutamatergique du NAc. Finalement une augmentation de la fréquence des mutations du gène codant pour VGLUT3 a été trouvée dans une cohorte de sujets souffrants de formes sévères d’addictions. L’ensemble de ces résultats suggère que la régulation concomitante de la signalisation DAergique et glutamatergique dans le NAc agit comme un filtre protecteur contre les effets renforçant de la cocaïne. / Drug addiction is a compulsive pattern of drug-taking/drug-seeking behavior with alternate phases of abstinence and relapse despite adverse consequences. Human beings are not equally susceptible to addictions and molecular mechanisms underlying addiction are still poorly understood. Numerous brain structures such as the ventral tegmental area (VTA), the prefrontal cortex, the amygdala or the hippocampus converge onto the nucleus accumbens (NAc) to regulate reward. GABAergic medium spiny neurons (MSN) are the major input target as well as output pathway of the NAc. MSNs are dynamically regulated by dopaminergic fibers originating from the VTA and by local tonically active cholinergic interneurons (TANs). The selective destruction of TANs modulates rewarding properties of psychostimulant such as cocaine. Twelve years ago we made the surprising discovery that these neurons express both the vesicular acetylcholine transporter (VAChT) and the vesicular glutamate transporter type 3 (VGLUT3). We recently established that VGLUT3 increases the acetylcholine (ACh) vesicular accumulation (and release) by a mechanism named vesicular synergy. Furthermore, the presence of VGLUT3 confers to TANs the ability to release glutamate in addition to ACh. Unexpectedly, mice that have lost the ability to secrete ACh in the NAc show minimal alteration of their behavioral response to cocaine. This result suggests that ACh is not sufficient to modulate reward.To investigate the role of VGLUT3-mediated signaling by TANs we used a mouse line that no longer expressed VGLUT3. During this PhD I established that silencing VGLUT3 in mice dramatically exacerbated cocaine-induced behaviors. Furthermore, we found that VAChT-KO and VGLUT3-KO mice showed a decreased and increased DA release (respectively) in the NAc. Therefore, TANs use ACh and glutamate to differentially regulate DA release. We have preliminary data suggesting the glutamate released by TANs activate mGluR that negatively control DA release. I further observed that in VGLUT3-KO mice the increased DA release enhanced DR1-signaling cascades. In addition, MSNs from the NAc of VGLUT3-KO mice had increased morphologic and synaptic glutamatergic activity in the NAc. Finally, we report non-synonymous mutations in the gene encoding VGLUT3 in patients with severe addictions. Our results suggested that the concomitant regulation of the dopaminergic and glutamatergic tone by VGLUT3 in the NAc acted as a protective filter against reinforcing properties of cocaine.

Page generated in 0.0548 seconds