• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

none

Li, Hsien-tsung 19 July 2007 (has links)
none
2

Studies on non-oxidative conversion of methane and ethane over metal oxide photocatalysts / 酸化物光触媒上でのメタンおよびエタンの非酸化的転化反応の研究

Singh, Surya Pratap 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第23976号 / 人博第1028号 / 新制||人||242(附属図書館) / 2022||人博||1028(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 吉田 寿雄, 教授 田部 勢津久, 教授 中村 敏浩 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
3

Analise de estruturas coerentes de larga escala em jatos de dispersão bifasicos / Large scale coherent structures analysis in two-phase jets

Decker, Rodrigo Koerich 02 August 2008 (has links)
Orientadores: Milton Mori, Henry França Meier, Udo Fritsching / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-10T10:03:01Z (GMT). No. of bitstreams: 1 Decker_RodrigoKoerich_D.pdf: 3679156 bytes, checksum: 9c914896fd9d31753adf9c1bed158cac (MD5) Previous issue date: 2008 / Resumo: Este trabalho propõe o estudo de estruturas coerentes de larga escala por meio da utilização da metodologia ¿Interparticle Arrival Time¿ (IAT) no escoamento de um jato bifásico. Experimentos foram desenvolvidos em relação a diferentes condições de velocidade inicial com diâmetro médio de partícula igual a 50 µm, e para duas diferentes misturas de partículas, 50 µm e 90 µm, em diferentes proporções, e comparados em relação a perfis de velocidade média, intensidade de turbulência e velocidade RMS. Medidas relacionadas à distribuição IAT foram também adquiridas para todas as condições analisadas. Os experimentos foram desenvolvidos para diferentes posições axiais e radiais a partir da saída do orifício de formação do jato. Perfis radiais de velocidade média, flutuação de velocidade (velocidade RMS), intensidade de turbulência e ¿interparticle arrival time¿ (em termos de distribuição Chi2 e número de desvios) foram obtidos pelo sistema de ¿Phase Doppler Anemometry¿, atravessando o sistema de medição ponto a ponto na direção desejada. Além disto, as variações das condições de velocidade inicial, distribuição de partículas e razão de carga permitem a obtenção de importantes informações em relação às estruturas locais do escoamento e seus efeitos sobre o transporte macroscópico e turbulento de partículas entre o centro do jato e as regiões de contorno do mesmo. Assim é possível identificar que no centro do jato não existe a formação de Estruturas Coerentes de Larga Escala (ECLE), ou seja, o escoamento é dominado por estruturas incoerentes. Existem também fortes indícios de formação de ECLE em uma região radial entre o centro e a região de contorno, sendo estas dependentes da condição inicial de velocidade da fase gás. Além disto, partículas com maior diâmetro suprimem a formação de ECLE. A distribuição IAT prova ser uma ferramenta importante na identificação dos locais onde ECLEs vêm a influenciar a distribuição de partículas, formando ¿clusters¿. A investigação extensiva de dados experimentais em relação ao comportamento da fase dispersa no escoamento gás sólido em um jato pode ser utilizada como uma importante fonte de dados para uma validação detalhada, por meio de simulação numérica, do escoamento disperso bifásico, incluindo as fortes interações entre as fases gás e particulada / Abstract: A study of large scale coherent structures by Interparticle Arrival Time (IAT) of a two phase jet flow is proposed. Measurements were carried out for different initial velocities with 50 µm particle mean diameter, and for two different particle mixtures with mean particle diameter of 50 µm and 90 µm, in different proportions, and analyzed in relation to different variables. Measurements related to IAT were also acquired for all analysis conditions. The experiments were developed for different axial and radial distances from the nozzle outlet. Radial profiles of mean velocity, RMS velocity, turbulence intensity and the IAT (in terms of Chi2 and number of deviation) were measured by a Phase Doppler Anemometry system, traversing the measuring device stepwise in the desired direction. Furthermore, the variation of the initial velocity conditions, particle diameter distributions, and particle loadings yield important information about the local flow structures and its effect on the macroscopic as well as the turbulent particle transport between the jet centre and the outer shear layer. Thus, it is possible to identify that in the centre line of the jet there is no formation of large scale coherent structures (ECLE), i. e., the flow is dominated by incoherent structures. There is also strong evidence of ECLE formation in a radial position between the centre and the outer shear layer of the jet, which are dependent on the gas initial velocity. Furthermore, particles with large diameter suppress ECLE formation. The IAT distribution proofs to be an important tool to identify regions where large scale coherent structures influence the particle distribution and tend to form particle clusters. The derived extensive experimental data set for the particle behaviour at the two-phase jet may serve as a basis for the detailed validation of numerical simulations of dispersed two phase flow behaviour including strong phase interactions between gaseous and particulate phases / Doutorado / Desenvolvimento de Processos Químicos / Doutor em Engenharia Química
4

Self-Assembly of Colloidal Particles with Controlled Interaction Forces / 相互作用力に基づくコロイド自己集積現象の理解

Arai, Nozomi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23232号 / 工博第4876号 / 新制||工||1761(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 宮原 稔, 教授 松坂 修二, 教授 山本 量一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
5

Struktura a magnetismus nanočástic na bázi přechodných kovů / Structure and magnetism of transition metal-based nanoparticles

Mantlíková, Alice January 2011 (has links)
The aim of the work is characterization of structure and magnetic properties of various CoFe2O4/SiO2 nanocomposites. Emphasis was put on the corelation of the magnetic properties with particle size (samples with different annealing temperature) and with strenght of the interparticle interactions (samples with different Fe/Si ratio or without silica matrix). Structure properties of all samples were determinated by powder x-ray diffraction, scanning and transmission electron microscopy. Magnetic properties were determinated by standard (temperature dependence of magnetization, magnetization isotherms) and advanced (a.c. susceptibility, memory effects) magnetic measurements. A sharp increase of the values of blocking temperature and coercivity with increase of strenght of the interparticle interactions and with increase of particle size was observed. Particle size determines the maximum value of coercivity and blocking temperature and strengh of the interparticle interactions shift this values in the interval determined by particle size.
6

Monitoring fluidized bed dryer hydrodynamics using pressure fluctuations and electrical capacitance tomography

Chaplin, Gareth Edgar 24 March 2005
As part of the production of certain solid-dosage pharmaceuticals, granulated ingredients are dried in a batch fluidized bed dryer. Currently, the determination of the completion of the drying process is accomplished through measurements of product or outlet air temperatures. No quantitative measurement of hydrodynamic behaviour is employed. Changes in bed hydrodynamics caused by variations in fluidization velocity may lead to increased particle attrition. In addition, excessive desiccation of the granules caused by inaccurate determination of the drying endpoint may lead to an increase in the thermal and mechanical stresses within the granules. The activity of future high-potency or peptide based drug products may be influenced by these effects. Therefore, the quantification of hydrodynamic changes may be a key factor in the tighter control of both fluidization velocity and product moisture, which are critical for maintaining product quality. <p>High-frequency measurements of pressure fluctuations in a batch fluidized bed dryer containing pharmaceutical granulate have been used to provide a global, non-intrusive indication of the hydrodynamic changes occurring throughout the drying process. A chaotic attractor comparison statistical test known as the S-statistic, has been applied to quantify these changes in drying and a related unit operation, fluidized bed granulation. The S-statistic showed a sensitivity to moisture which is not seen with frequency and amplitude analysis. In addition, the S-statistic has been shown to be useful in identifying an undesirable bed state associated with the onset of entrainment in a bed instrumented for the collection of both pressure fluctuation and entrainment data. Thus, the use of the S-statistic analysis of pressure fluctuations may be utilized as a low-cost method for determining product moisture or changes hydrodynamic state during fluidized bed drying. <p>Electrical capacitance tomography (ECT) has also been applied in this study to image the flow structure within a batch fluidized bed used for the drying of pharmaceutical granulate. This represents the first time that ECT has been applied to a bed of wet granulate material. This was accomplished through the use of a novel dynamic correction technique which accounts for the significant reduction in electrical permittivity occurring as moisture is lost during the drying process. The correction has been independently verified using x-ray tomography. <p>Investigation of the ECT images taken in the drying bed indicates centralized bubbling behaviour for approximately the first 5 minutes of drying. This behaviour is a result of the high liquid loading of the particles at high moisture. Between moisture contents of 18-wt% and 10-wt%, the tomograms show an annular pattern of bubbling behaviour with a gradual decrease in the cross-sectional area involved in bubbling behaviour. The dynamic analysis of this voidage data with the S-statistic showed that a statistically significant change occurs during this period near the walls of the vessel, while the centre exhibits less variation in dynamic behaviour. The changes identified by the S-statistic analysis of voidage fluctuations near the wall were similar to those seen in the pressure fluctuation measurements. This indicates that the source of the changes identified by both these measurement techniques is a result of the reduction in the fraction of the bed cross-section involved in bubbling behaviour. At bed moisture contents below 5-wt%, rapid divergence was seen in the S-statistic applied to both ECT and pressure fluctuation measurements. This indicates that a rapid change in dynamics occurs near the end of the drying process. This is possibly caused by the entrainment of fines at this time, or the build-up of electrostatic charge. <p>The use of the complimentary pressure fluctuation and ECT measurement techniques have identified changes occurring as a result of the reduction of moisture during the drying process. Both the localized changes in the voidage fluctuations provided by the ECT imaging and the global changes shown by the pressure fluctuation measurements indicate significant changes in the dynamic behaviour caused by the reduction of moisture during the drying process. These measurement techniques could be utilized to provide an on-line indication of changes in hydrodynamic regime. This information may be invaluable for the future optimization of the batch drying process and accurate determination of the drying endpoint.
7

Monitoring fluidized bed dryer hydrodynamics using pressure fluctuations and electrical capacitance tomography

Chaplin, Gareth Edgar 24 March 2005 (has links)
As part of the production of certain solid-dosage pharmaceuticals, granulated ingredients are dried in a batch fluidized bed dryer. Currently, the determination of the completion of the drying process is accomplished through measurements of product or outlet air temperatures. No quantitative measurement of hydrodynamic behaviour is employed. Changes in bed hydrodynamics caused by variations in fluidization velocity may lead to increased particle attrition. In addition, excessive desiccation of the granules caused by inaccurate determination of the drying endpoint may lead to an increase in the thermal and mechanical stresses within the granules. The activity of future high-potency or peptide based drug products may be influenced by these effects. Therefore, the quantification of hydrodynamic changes may be a key factor in the tighter control of both fluidization velocity and product moisture, which are critical for maintaining product quality. <p>High-frequency measurements of pressure fluctuations in a batch fluidized bed dryer containing pharmaceutical granulate have been used to provide a global, non-intrusive indication of the hydrodynamic changes occurring throughout the drying process. A chaotic attractor comparison statistical test known as the S-statistic, has been applied to quantify these changes in drying and a related unit operation, fluidized bed granulation. The S-statistic showed a sensitivity to moisture which is not seen with frequency and amplitude analysis. In addition, the S-statistic has been shown to be useful in identifying an undesirable bed state associated with the onset of entrainment in a bed instrumented for the collection of both pressure fluctuation and entrainment data. Thus, the use of the S-statistic analysis of pressure fluctuations may be utilized as a low-cost method for determining product moisture or changes hydrodynamic state during fluidized bed drying. <p>Electrical capacitance tomography (ECT) has also been applied in this study to image the flow structure within a batch fluidized bed used for the drying of pharmaceutical granulate. This represents the first time that ECT has been applied to a bed of wet granulate material. This was accomplished through the use of a novel dynamic correction technique which accounts for the significant reduction in electrical permittivity occurring as moisture is lost during the drying process. The correction has been independently verified using x-ray tomography. <p>Investigation of the ECT images taken in the drying bed indicates centralized bubbling behaviour for approximately the first 5 minutes of drying. This behaviour is a result of the high liquid loading of the particles at high moisture. Between moisture contents of 18-wt% and 10-wt%, the tomograms show an annular pattern of bubbling behaviour with a gradual decrease in the cross-sectional area involved in bubbling behaviour. The dynamic analysis of this voidage data with the S-statistic showed that a statistically significant change occurs during this period near the walls of the vessel, while the centre exhibits less variation in dynamic behaviour. The changes identified by the S-statistic analysis of voidage fluctuations near the wall were similar to those seen in the pressure fluctuation measurements. This indicates that the source of the changes identified by both these measurement techniques is a result of the reduction in the fraction of the bed cross-section involved in bubbling behaviour. At bed moisture contents below 5-wt%, rapid divergence was seen in the S-statistic applied to both ECT and pressure fluctuation measurements. This indicates that a rapid change in dynamics occurs near the end of the drying process. This is possibly caused by the entrainment of fines at this time, or the build-up of electrostatic charge. <p>The use of the complimentary pressure fluctuation and ECT measurement techniques have identified changes occurring as a result of the reduction of moisture during the drying process. Both the localized changes in the voidage fluctuations provided by the ECT imaging and the global changes shown by the pressure fluctuation measurements indicate significant changes in the dynamic behaviour caused by the reduction of moisture during the drying process. These measurement techniques could be utilized to provide an on-line indication of changes in hydrodynamic regime. This information may be invaluable for the future optimization of the batch drying process and accurate determination of the drying endpoint.
8

Contribution to the Understanding of Fresh and Hardened State Properties of Low Cement Concrete

Tagliaferri de Grazia, Mayra 12 September 2018 (has links)
Concrete, the major construction material used in the civil industry worldwide, displays remarkable performance and economic benefits. Yet, it also presents a huge environmental impact producing about 7% of the global carbon dioxide (CO2). Given the rise of global warming concerns, studies have been focusing on alternatives to reduce the amount of Portland cement (PC), which is the least sustainable ingredient of the mixture, for example by adopting particle packing model (PPM) techniques. Although a promising alternative, there is currently a lack of studies regarding the efficiently use of PPMs to reduce PC without compromising the fresh and hardened properties of the material. This work appraises the influence of PPMs and advanced mix-design techniques on the fresh (rheological behaviour) and hardened (compressive strength, modulus of elasticity, porosity, and permeability) state behaviours of systems with reduced amount of PC, the so-called low cement content (LCC) concrete. Results show that is possible to produce eco-efficient concrete maintaining and/or enhancing fresh and hardened properties of the material. Nevertheless, further durability and long-term behaviour must be performed on LCC systems.
9

Interactive Glyph Placement for Tensor Fields: Tracking Lines in Higher Order Tensor Fields

Hlawitschka, Mario, Scheuermann, Gerik, Hamann, Bernd 04 February 2019 (has links)
Visualization of glyphs has a long history in medical imaging but gains much more power when the glyphs are properly placed to fill the screen. Glyph packing is often performed via an iterative approach to improve the location of glyphs. We present an alternative implementation of glyph packing based on a Delaunay triangulation to speed up the clustering process and reduce costs for neighborhood searches. Our approach does not require a re–computation of acceleration structures when a plane is moved through a volume, which can be done interactively. We provide two methods for initial placement of glyphs to improve the convergence of our algorithm for glyphs larger and glyphs smaller than the data set’s voxel size. The main contribution of this paper is a novel approach to glyph packing that supports simpler parameterization and can be used easily for highly efficient interactive data exploration, in contrast to previous methods.
10

Investigation of Mobility Parameters in Rheological Behaviour of Low Cement Content Mortars

Asirvatham, Derick 17 January 2022 (has links)
The construction industry is closely tied to economic development economies, and increasing demand also presents a significant contribution to environmental degradation. The construction industry’s impact to climate change is led by the 8% contribution from the production of concrete mixtures, more specifically, the production of cement. The combination of using advanced mixdesign techniques (e.g., particle packing models -PPM) and more sustainable ingredients poses as a promising alternative to overcome concrete environmental impact. However, there is a lack of studies regarding the fresh state difficulties arising from the aforementioned combination. Therefore, this work appraises the use of mobility parameters to overcome the fresh state issue raised when mix-designing mortar mixtures through PPM and with high volume of limestone filler. Twelve mixtures were developed with distinct cement content ranging from 150 kg/m3 to 320 kg/m3. To produce sustainable mortar, besides using PPM, cement content was replaced by limestone filler. Time dependent fresh state analysis was performed using mortar slump flow and a rheological profile. In the hardened states, the compressive strength, porosity, surface electrical resistivity tests were performed. The main findings of the project observed a strong correlation between mobility parameters and five distinct rheological parameters: flow behaviour parameter, high shear rate viscosity and shear stress, low shear rate viscosity and shear stress. Additionally, in the hardened state, a dilution parameter IPScement was used to appraise the dilution and filler effect of the mortar mixtures. The works highlighted a promising method to produce eco-efficient mortars.

Page generated in 0.0639 seconds