Spelling suggestions: "subject:"interpenetrating networks"" "subject:"interpenetration networks""
1 |
Large Strain and Fracture of Multiple Network Elastomers / Grande déformation et fracture d'élastomères à réseaux multiplesMillereau, Pierre Michel 22 May 2017 (has links)
Durant ce travail, nous avons étudié les propriétés mécaniques et de fracture d'élastomères à réseaux multiples synthétisés par des étapes successives de gonflement/polymérisation inspirées de l'architecture moléculaire développée par Gong pour les doubles réseaux hydrogels. Une méthode de synthèse plus versatile a été utilisée pour varier de façon continue le pré-étirement isotrope du premier réseau λ0, qui contrôle le module d'Young et le durcissement. Dans le cas d'une dilution importante du premier réseau (<10%), une scission moléculaire apparaît à grande déformation dans le réseau pré-étiré sans rompre le matériau. Le taux de dilution contrôle la quantité d’endommagement et donc la pente de la courbe contrainte-déformation. Finalement, pour les systèmes les plus dilués (<3%), une striction est observée au-dessus d’un seuil de contrainte. Changer le taux de réticulant du premier réseau ou les monomères utilisés ont conduit par ailleurs à l’obtention de comportements mécaniques similaires. L’énergie de fracture Γ est une fonction croissante de λ0. Des techniques de visualisation locale comme la Corrélation d’Image Numérique et l’intégration de molécules méchanoluminescentes ont été utilisées pour décrire une zone d’endommagement en tête de fissure dont la taille augmente avec λ0. Enfin, le mécanisme de renforcement des élastomères à réseaux multiples a pu être partiellement décrit dans le contexte du modèle de Brown sur les doubles réseaux. / We investigated systematically the mechanical and fracture properties of multiple network elastomers synthesized by successive swelling/polymerization steps inspired by the molecular architecture of Gong’s double network gels. A more versatile synthesis method was used to vary continuously the isotropic degree of prestretching λ0 of the first network resulting in a wider range of mechanical behaviours, where λ0 controls the Young’s modulus at small strain and the strain hardening at large strain. If the first network is diluted enough (<10%) molecular bond breakage occurs in this prestretched network at high strain while avoiding sample failure. The degree of dilution controls the amount of damage and therefore the slope of the stress-strain curve. Finally, for the most diluted systems (<3%), a yield stress and a necking phenomenon was observed. Changing the degree of crosslinking of the first network or the monomers used led to the same qualitative mechanical behaviour. The fracture energy Γ was shown to be an increasing function of λ0 however different regimes could be distinguished with macroscopic fracture occurring before or after bulk damage was detected. Visualisation techniques such as Digital Image Correlation and embedded mechanoluminescent molecules were used to map a damage zone in front of the crack tip, the size of which increased with λ0. Finally, the toughening mechanism of the multiple network elastomers could be understood in a nearly quantitative way within the framework of Brown's model of fracture of double network gels.
|
2 |
Novel Polymer-Metal Nanocomposites for Applications in Detection and SensingChaparro, Dayling L. 11 April 2007 (has links)
Detection of trace elements such as organic contaminants, explosive residues, and
metal ions is an intellectually challenging task in science and engineering. It is also a
topic of increasing importance due to its impact on society and the environment.
Designing molecularly imprinted materials is one of the most promising approaches to
explore sensing and detection applications. “Stimuli-sensitive” polymer materials are
ideal candidates for these imprinted sensors as they are able to respond to changes in their
environment and can be tailored by cross-linking the polymer chains. The responses can
be amplified and transduced into measurable signals due to macromolecular properties
provided by the use of a polymer. The purpose of the research in this project is to
combine organic polymers with inorganic constituents to tailor the binding properties and
the responses of the composite material for detection of metals ions in aqueous solutions.
The research, here, is based on a thermally responsive polymer such as poly(Nisopropylacrylamide)
(PNIPAM), which exhibits a well-known reversible volume phase
transition in aqueous media around approximately 32°C. Combining cross-linked
microgels formed from PNIPAM and its copolymers with gold nanoparticles (GNP)
imparts the composite material with optical properties such as intense visible absorption
due to the unique surface plasmon absorption of these small nanoparticles. The use of
copolymers allows incorporation of functional groups, such as carboxylic acid, that are
potential sites for binding metal ions. Cross-linking of the metal ion binding polymer
imprints the metal ion in the PNIPAM microgel network.
In
this research, design of the composite material was investigated using
copolymers of NIPAM and acrylic acid (AA), copolymers of NIPAM and glycidyl
methacrylate (GMA), and interpenetrating networks of PNIPAM and PAA. A broad
spectrum of polymerization conditions were studied such as changes in cross-linking
density as well as changes in the synthetic procedure. Techniques such as turbidometry,
ultraviolet visible spectroscopy (UV-VIS), transmission electron microscopy (TEM), and
dynamic light scattering (DLS) were employed to characterize the microgels as well as
their composites with GNP. Preliminary investigation of imprinting the microgels with
heavy metal ions such as copper was also performed. The novel polymer-metal
nanocomposites explored here will serve as an important contribution for the current
ongoing research efforts in designing materials in the nano-scale capable of sensing and
detecting metal ions in solution with high selectivity.
|
Page generated in 0.0784 seconds