• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du comportement de gaz rares dans une matrice céramique à haute température : Modélisation par approches semi-empiriques

Colbert, Mehdi 15 November 2012 (has links)
Le dioxyde d'uranium UO2 est utilisé en tant que combustible standard dans les réacteurs à eau pressurisée (REP). Pour cette raison il est très important de bien connaître ses propriétés mécaniques, thermiques et physico-chimiques dans les conditions de fonctionnement normales ou accidentelles (600K - 2000K). Lors des réactions de fission de l'uranium, des gaz rares tels que le Xe et Kr sont générés. Ces atomes présentent une très faible solubilité dans la matrice combustible et vont donc soit être relâchés, soit former des bulles de gaz (intra ou intergranulaires) au sein de l'UO2. La présence de ces bulles modifie les propriétés thermomécaniques du combustible. Les enjeux en terme de sûreté, liés à la présence de ces bulles, ont donné lieu à d'importants travaux, tant sur le plan expérimental que théorique, afin d'accroître la compréhension de l'ensemble des propriétés physiques et du comportement du combustible. L'objectif de nos travaux est de mieux comprendre l'impact de bulles de gaz intragranulaires sur le comportement du combustible au moyen de modélisations atomistiques. Dans un premier temps, l'impact de cavités intragranulaires sur les propriétés thermomécaniques (comportement élastique, dilatation thermique et conductivité thermique) ont été étudiées par des approches semi-empiriques. Un soin particulier a été porté à l'étude des effets d'interfaces pour ces cavités nanométriques. Dans un deuxième temps, nous avons procédé à un remplissage physique de ces cavités par du xénon et nous avons étudié la microstructure et les pressions régnant au sein des bulles. / ...
2

Scales Depencence of Fracture Density and Fabric in the Damage Zone of a Large Displacement Continental Transform Fault

Ayyildiz, Muhammed 14 March 2013 (has links)
Characterization of fractures in an arkosic sandstone from the western damage zone of the San Andreas Fault (SAF) at San Andreas Fault Observatory at Depth (SAFOD) was used to better understand the origin of damage and to determine the scale dependence of fracture fabric and fracture density. Samples for this study were acquired from core taken at approximately 2.6 km depth during Phase 1 drilling at SAFOD. Petrographic sections of samples were studied using an optical petrographic microscope equipped with a universal stage and digital imaging system, and a scanning electron microscope with cathodoluminescence (SEM-CL) imaging capability. Use of combined optical imaging and SEM-CL imaging was found to more successfully acquire true fracture density at the grain scale. Linear fracture density and fracture orientation were determined for transgranular fractures at the whole thin section scale, and intragranular fractures at the grain scale. The microscopic scale measurements were compared to measurements of mesoscopic scale fractures in the same core, as well as to published data from an ancient, exhumed trace of the SAF in southern California. Fracturing in the damage zone of the SAF fault follows simple scaling laws from the grain scale to the km scale. Fracture density distributions in the core from SAFOD are similar to distributions in damaged arkosic sandstone of the SAF along other traces. Transgranular fractures, which are dominantly shear fractures, indicate preferred orientation approximately parallel to the dominant sets of the mesoscale faults. Although additional work is necessary to confirm general applicability, the results of this work demonstrate that fracture density and orientation distribution over a broad range of scales can be determined from measurements at the mesoscopic scale using empirical scaling relations.
3

Simulation de la rupture ductile intragranulaire des aciers irradiés. Effets de l'anisotropie cristalline et du gradient de déformations / Modeling the intragranular ductile fracture of irradiated steels. Effects of crystal anisotropy and strain gradient

Ling, Chao 24 January 2017 (has links)
L'irradiation peut modifier les propriétés mécaniques des aciers inoxydables austénitiques. Une diminution de la ténacité à la rupture des aciers en fonction de la dose est observée. La rupture ductile due à la croissance et la coalescence des cavités est toujours un mécanisme dominant dans les aciers irradiés jusqu'à 10 dpa. Des cavités peuvent être crées de manière différente : nucléées à partir des inclusions ou des précipités d'irradiation, ou créées directement par irradiation. Cette thèse a pour objectif d'étudier la rupture ductile des aciers irradiés due à la croissance et la coalescence des cavités intragranulaires. Basée sur la plasticité cristalline, des simulations en éléments finis sont effectuées sur les cellules unitaires pour étudier l'effet de l'orientation cristallographique et de la triaxialité de contraintes sur la croissance et la coalescence des cavités. L'effet de l'écrouissage post-irradiation sur la croissance et la coalescence des cavités est étudié avec un modèle de la plasticité cristalline prenant compte des défauts d'irradiation. En outre, un modèle élastomère-visco-plastique en grandes transformations est proposé pour décrire la croissance des cavités dans le monocristal. Le modèle est appliqué à la simulation de l'endommagement ductile dans le monocristal et le polycristal. Des cavités peuvent avoir des tailles différentes et la taille peut avoir une influence sur la ténacité à la rupture des aciers. Afin d'étudier cet effet, un modèle micromorphe de plasticité cristalline est proposé et appliqué à la simulation de la croissance et la coalescence des cavités intragranulaires de différentes tailles ainsi qu'aux phénomènes de localisation dans les monocristaux. / Irradiation causes drastic modifications of mechanical properties of austenitic stainless steels and a decrease in the fracture toughness with irradiation has been observed. Ductile fracture due to void growth and coalescence remains one dominant fracture mechanism for doses in the range of 0-10 dupa. Voids may have different origins : nucleated at inclusions or irradiation-induced precipitates during mechanical loading, or produced directly by irradiation. The present work is to investigate ductile fracture of irradiated steels due to growth and coalescence of intragranulaire voids. Based on continuum crystal plasticity theory, FE simulations are performed on unit cells for studying effects of lattice orientation and stress triaxiality on void growth and coalescence. The influence of post-irradiation hardening/softening on void growth ans coalescence is evaluated with a physically based crystal plasticity model. Besides, an elastoviscoplastic model at finite strains is proposed to describe void growth up to coalescence in single crystals, and is assessed based unit cell simulations. The model is then applied to simulate ductile damage in single crystals ans polycrystals. As voids in irradiated steels may have different origins, they may have different sizes, which potentially have an influence on ductile fracture process and fracture toughness of irradiated steels. In order to assess the size effect, a micromorphic crystal plasticity model is proposed and applied to simulate growth and coalescence of intragranular voids of different sizes.
4

Improvement of weld HAZ toughness at low heat input by controlling the distribution of M-A constituents

Laitinen, R. (Risto) 23 February 2006 (has links)
Abstract This research work focuses on how to improve the toughness of heat affected zones (HAZs) of low heat input welds in the case of high strength thermomechanically processed (TMCP) and recrystallization controlled rolled and accelerated cooled (RCR) plates with yield strengths of 355–500 MPa. Experimental work was aimed at the investigation of the intragranular nucleation of acicular ferrite or bainite in hot-rolled plates and the evaluation of the Charpy V and CTOD toughness of the most critical sub-zones of the weld HAZ using simulated specimens with a cooling time t8/5 = 5 s. The zones studied were the coarse grained HAZ (CGHAZ), the intercritically reheated coarse-grained HAZ (ICCGHAZ) and the intercritical HAZ (ICHAZ), the metallographical analyses consisted of microstructural investigations complemented with hardness measurements. Optical, scanning and transmission electron microscopy techniques were employed together with image and electron backscatter diffraction (EBSD) analysis. The test results showed that the toughness of the various sub-zones of the HAZ is improved by promoting intragranularly nucleated ferritic-bainitic (acicular) microstructure in both the CGHAZ and in the base plate. In this way, the sub-zones subjected to intercritical thermal cycles (the ICCGHAZ and the ICHAZ) develop evenly distributed M-A constituents between ferrite and bainite laths. These favourable microstructures can be achieved by using titanium killing or by avoiding niobium microalloying by using copper plus nickel alloying instead. In the laboratory experiments titanium killed steel, containing titanium-manganese oxide/manganese sulphide inclusions with a number density of 300–750 particles/mm2, develops a largely acicular ferritic microstructure in the base plate provided the austenite grain size is greater than about 120 μm and the cooling rate is in the range 6–11 °C/s down to 500 °C. Under plate mill conditions, no significant amount of acicular ferrite could be obtained, because it was not possible to achieve austenite grain sizes larger than about 70 μm after rolling. However, a significant fraction of acicular ferritic-bainitic microstructure was achieved in the CGHAZ, when the austenite grain size exceeded 90 μm. When achieved, a uniform distribution of M-A particles in an acicular ferritic-bainitic microstructure improves toughness. Cracks nucleate at numerous sites on M-A/ferrite boundaries or bainite packet interfaces, but they are initially arrested in the acicular matrix. Crack growth finally occurs by linking of the numerous arrested microcracks.
5

Analyse non destructive de la sous-structuration des grains individuels dans un polycrystal d’aluminium deformé en traction uniaxiale. / Non destructive analysis of grain sub-structuration in single grains of an Aluminium polycrystal deformed in uniaxial tension.

Filippelli, Ernesto Francesco 20 January 2017 (has links)
Ce travail vise à améliorer la compréhension des mécanismes et de la dynamique de sous-structuration des grains pendant la deformation des matériaux polycristallins. Pour cela, des experience in situ en synchrotron et des acquisitions EBSD ont été menées afin d’étudier les comportements des grains individuels d’un polycrystal d’Aluminium déformé plastiquement. Une éprouvette d’un alliage Al-0.1%Mn a été déformée en traction in situ et analysée par microscopie 3D par diffraction des Rayons-X (3DXRD). Une nouvelle méthode de dépouillement a été développée pour determiner les axes de désorientation intragranulaires et les distributions d’orientation, grâce à l’analyse de l’élargissement azimutal des taches de diffraction. La technique EBSD a été appliquée pour obtenir des cartographies de désorientation des grains individuels d’une éprouvette déformée en traction. Trois acquisitions ont été réalisées sur la même région d’intérêt à l’état non déformé et après l’application des deformations 1% et 5%. Ces résultats permettent une meilleure comprehension de la formation et de l’évolution des gradients d’orientations intragranulaires, et son ten bon accord avec les modèles théoriques pré-existants. Aussi, la caractérisation de la sous-structuration des grains et de la deformation intragranulaire a été réalisée grâce à la technique K-map. La deformation était très hétérogène avec des valeurs élevées de compression et de traction à l’intérieur des grains et en proximité de deux joints de grains, respectivement. La distribution de la norme des vecteurs de diffraction a montré que les dislocations sont à l’origine de la deformation. / This work aims to improve the understanding of grain sub-structuration mechanisms and dynamics during deformation of polycrystals. For this purpose, in situ synchrotron experiments and EBSD acquisitions were coupled to study the response of single grains of an Al-0.1%wt.Mn polycrystal during tensile deformation. The specimen deformed in situ at the synchrotron was analyzed by 3DXRD. A new method provided a grain-by-grain analysis of the intragranular misorientation axes and their orientation distribution, through the investigation of the azimuthal broadening of diffraction spots. The 3DXRD results were cross-checked by classical EBSD analysis. Three acquisitions were carried out over the same region of interest at the undeformed state and after the application of 1% and 5% strain. Thanks to the available spatial resolution, the EBSD results allow for a better comprehension of the creation and dynamics of intragranular orientation gradients, and are in good agreement with pre-existing theoretical models. In addition, the characterization of grain sub-structuration and intragranular strain was performed through a novel X-Ray scanning technique, the K-map. The strain was found to be very heterogeneous with high compressive and tensile values in the grain interior and near two grain boundaries, respectively. Dislocations were found to be at the origin of deformation.
6

FORMATION AND EVOLUTION OF TIN SURFACE DEFECTS DURING CYCLIC MECHANICAL LOADING

Xi Chen (8992145) 29 July 2020 (has links)
<p>Stress relaxation in tin films can result in microstructural changes visible on the surface, referred to as “surface defects,” and can include whisker and hillock formation, cracking, nucleation of new grains, and grain growth. Sn whiskers are of particular concern for microelectronics reliability in which Sn whiskers growing from component surface and cause catastrophic short-circuiting. While prior research has identified the conditions and mechanisms for surface defect evolution during aging and thermal cycling, the response of tin films due to mechanical stress, especially high frequency vibration, is not fully understood. In practical terms, high frequency vibration is an important source of mechanical stress generation in microelectronics for automotive and aerospace applications. This research, based on high frequency vibration of cantilevers, adds to the existing mechanisms for stress relaxation process in metal thin films, not just for tin films, as well as proposed new mechanisms for such processes.</p> <p>In the first study, the piezoelectric drive of small atomic force microscopy (AFM) cantilevers vibrated at resonance are used for high frequency cyclic bending experiments. Intermetallic (IMC) formation as well as initial film morphology and thickness (corresponding to surface grain size) all influence the response of tin films for cyclic bending. A laser doppler vibrometer (LDV) system was used to identify the real-time strain along the cantilever during cycling, suggesting that the small strains are responsible for the limited nucleation and growth for defects though the defect density increases with the number of cycles and strain distribution along the cantilever.</p> <p>In the second study, the effect of larger strains on defect evolution was determined using vibration of larger cantilevers at resonance as a function of number of cycles, frequency, temperature, and whether the vibration was continuous or interrupted for SEM characterization of defect type and density. In addition to typical micro-sized whiskers and hillocks, intragranular breakup (IGB) with intrusions and extrusions and nanowhiskers (NWs) with diameters < 1 𝜇m were observed. Both increasing number of cycles and strain amplitude/rate promote defect formation for a fixed frequency, with the defect density being strongly frequency dependent.Vibration at low temperature and interrupting measurements for SEM characterization affected the relative densities. The density of larger surface defects is strongly influenced by interruptions while NW density is almost unaffected. </p><p>Both low resonant frequency and low T (223 K) promote IGB formation during cyclic bending due to large maximum strain amplitude and slower diffusion/creep at low T, respectively. Though the overall defect density for low T is smaller than that at room temperature (RT), the response of films is similar to that at RT, indicating the same mechanisms. The defect density decrease at low T is mainly determined by NW formation, and there is a transition from micro-sized surface defects to IGBs for cyclic bending at low T.</p><p>This research demonstrated that cyclic bending of cantilevers can be used to quantify the stress relaxation of tin films in an important stress regime for microelectronics and to develop defect mitigation strategies to improve the reliability of interconnects in electronic applications.</p>
7

Precipitation Study in a High Temperature Austenitic Stainless Steel using Low Voltage Energy Dispersive X-ray Spectroscopy

Gharehbaghi, Ali January 2012 (has links)
Precipitation of second phase particles is a key factor dominating the mechanical properties of high temperature alloys. In order to control and optimize the precipitation effect it is of great importance to study the role of alloying elements in the formation and stability of precipitates. As a favored family of corrosion and creep resistant austenitic stainless steels the 20Cr-25Ni alloy was modified by addition of copper, molybdenum, nitrogen, niobium and vanadium. A set of alloys with similar matrix but varying contents of niobium, vanadium and nitrogen were prepared. Sample preparation process included melting, hot forging, solution annealing and finally aging for 500 h at 700, 800 and 850 ºC. Light optical and scanning electron microscopy revealed micron-scale precipitates on grain and twin boundaries as well as sub-micron intragranular precipitates in all samples. Characterization of precipitates was carried out by means of energy dispersive X-ray spectroscopy (EDS). Among micron-scale precipitates M23C6 carbide was the dominant phase at 700 ºC aging temperature; whereas silicon-rich eta phase (M5SiC) was the main precipitate in samples aged at 800 and 850 ºC. A few sigma phase particles were found in one of the niobium containing samples aged at 700 and 800 ºC. Sub-micron intragranular precipitates were analyzed using low voltage EDS. The spatial resolution of EDS microanalysis at 5 kV accelerating voltage was estimated as almost 100 nm which was at least eight times better than that using the ordinary 20 kV voltage. Also, low voltage EDS revealed the presence of light elements (carbon, nitrogen and boron) in the composition of sub-micron particles thanks to the less matrix effect in absorption of low energy X-rays of light elements. In samples aged at 700 ºC niobium-rich and vanadium-rich carbonitrides were found as the dominant precipitates; whereas they contained much less carbon in samples aged at 800 ºC and mostly became carbon-free nitrides with well-defined cuboidal shapes at 850 ºC aging temperature. This showed that niobium/vanadium-rich nitride phases are stable precipitates at aging temperatures above 700 ºC. The drawbacks of low voltage EDS were indicated as high detection limit (no detection of low- content elements), poor accuracy of quantitative analysis and high sensitivity to surface contamination. Some possible ways to improve the accuracy of low voltage EDS, e.g. longer acquisition time were examined and some other suggestions are proposed for future works.
8

Precipitation Study in a High Temperature Austenitic Stainless Steel using Low Voltage Energy Dispersive X-ray Spectroscopy

Gharehbaghi, Ali January 2012 (has links)
Precipitation of second phase particles is a key factor dominating the mechanical properties of high temperature alloys. In order to control and optimize the precipitation effect it is of great importance to study the role of alloying elements in the formation and stability of precipitates. As a favored family of corrosion and creep resistant austenitic stainless steels the 20Cr-25Ni alloy was modified by addition of copper, molybdenum, nitrogen, niobium and vanadium. A set of alloys with similar matrix but varying contents of niobium, vanadium and nitrogen were prepared. Sample preparation process included melting, hot forging, solution annealing and finally aging for 500 h at 700, 800 and 850 ºC.Light optical and scanning electron microscopy revealed micron-scale precipitates on grain and twin boundaries as well as sub-micron intragranular precipitates in all samples. Characterization of precipitates was carried out by means of energy dispersive X-ray spectroscopy (EDS). Among micron-scale precipitates M23C6 carbide was the dominant phase at 700 ºC aging temperature; whereas silicon-rich eta phase (M5SiC) was the main precipitate in samples aged at 800 and 850 ºC. A few sigma phase particles were found in one of the niobium containing samples aged at 700 and 800 ºC. Sub-micron intragranular precipitates were analyzed using low voltage EDS. The spatial resolution of EDS microanalysis at 5 kV accelerating voltage was estimated as almost 100 nm which was at least eight times better than that using the ordinary 20 kV voltage. Also, low voltage EDS revealed the presence of light elements (carbon, nitrogen and boron) in the composition of sub-micron particles thanks to the less matrix effect in absorption of low energy X-rays of light elements. In samples aged at 700 ºC niobium-rich and vanadium-rich carbonitrides were found as the dominant precipitates; whereas they contained much less carbon in samples aged at 800 ºC and mostly became carbon-free nitrides with well-defined cuboidal shapes at 850 ºC aging temperature. This showed that niobium/vanadium-rich nitride phases are stable precipitates at aging temperatures above 700 ºC.The drawbacks of low voltage EDS were indicated as high detection limit (no detection of low- content elements), poor accuracy of quantitative analysis and high sensitivity to surface contamination. Some possible ways to improve the accuracy of low voltage EDS, e.g. longer acquisition time were examined and some other suggestions are proposed for future works.
9

Engineering of Pharmaceutical Particles : Modulation of Particle Structural Properties, Solid-State Stability and Tabletting Behaviour by the Drying Process

Berggren, Jonas January 2003 (has links)
<p>Relationships between stresses during the drying process, particle structural and functional properties, and particle engineering by the drying process were addressed in this thesis. In the first part, the importance of the drying phase and the effect of the drying rate on the intragranular porosity of microcrystalline cellulose pellets were investigated. Differences in porosities of dried pellets could be explained by liquid-related differences in densification during convective drying rather than by differences in densification during wet agglomeration. An increased drying rate gave more porous pellets with a lower compression shear strength, and thereby stronger tablets. The next part dealt with modulation of solid-state stability and tabletting behaviour of amorphous lactose by incorporation of different polymers by spray drying. Increased content and molecular weight of poly(vinylpyrrolidone) (PVP) resulted in an increased resistance to crystallisation provoked by heat and moisture. The stabilising effect was even more evident after long-term storage. However, the glass transition temperature was almost unaffected and may, therefore, be questioned as a stability indicator for these types of materials. The presence of the polymers resulted in somewhat less deformable particles. Incorporation of PVP increased the compactability, whilst a surfactant decreased it, which could be shown to be related to differences in particle-particle adhesivity between the different particles. This thesis contributes to increased mechanistic understanding in the area of particle engineering that may lead to better prediction and optimisation of the functionality of pharmaceutical particles, which is of the utmost importance in the development and production of solid dosage forms.</p>
10

Engineering of Pharmaceutical Particles : Modulation of Particle Structural Properties, Solid-State Stability and Tabletting Behaviour by the Drying Process

Berggren, Jonas January 2003 (has links)
Relationships between stresses during the drying process, particle structural and functional properties, and particle engineering by the drying process were addressed in this thesis. In the first part, the importance of the drying phase and the effect of the drying rate on the intragranular porosity of microcrystalline cellulose pellets were investigated. Differences in porosities of dried pellets could be explained by liquid-related differences in densification during convective drying rather than by differences in densification during wet agglomeration. An increased drying rate gave more porous pellets with a lower compression shear strength, and thereby stronger tablets. The next part dealt with modulation of solid-state stability and tabletting behaviour of amorphous lactose by incorporation of different polymers by spray drying. Increased content and molecular weight of poly(vinylpyrrolidone) (PVP) resulted in an increased resistance to crystallisation provoked by heat and moisture. The stabilising effect was even more evident after long-term storage. However, the glass transition temperature was almost unaffected and may, therefore, be questioned as a stability indicator for these types of materials. The presence of the polymers resulted in somewhat less deformable particles. Incorporation of PVP increased the compactability, whilst a surfactant decreased it, which could be shown to be related to differences in particle-particle adhesivity between the different particles. This thesis contributes to increased mechanistic understanding in the area of particle engineering that may lead to better prediction and optimisation of the functionality of pharmaceutical particles, which is of the utmost importance in the development and production of solid dosage forms.

Page generated in 0.1366 seconds