• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 22
  • 15
  • 13
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spinal Cord Stimulation Suppresses Bradycardias and Atrial Tachyarrhythmias Induced by Mediastinal Nerve Stimulation in Dogs

Cardinal, René, Pagé, Pierre, Vermeulen, Michel, Bouchard, Caroline, Ardell, Jeffrey L., Foreman, Robert D., Armour, J. Andrew 24 November 2006 (has links)
Spinal cord stimulation (SCS) applied to the dorsal aspect of the cranial thoracic cord imparts cardioprotection under conditions of neuronally dependent cardiac stress. This study investigated whether neuronally induced atrial arrhythmias can be modulated by SCS. In 16 anesthetized dogs with intact stellate ganglia and in five with bilateral stellectomy, trains of five electrical stimuli were delivered during the atrial refractory period to right- or left-sided mediastinal nerves for up to 20 s before and after SCS (20 min). Recordings were obtained from 191 biatrial epicardial sites. Before SCS (11 animals), mediastinal nerve stimulation initiated bradycardia alone (12 nerve sites), bradycardia followed by tachyarrhythmia/fibrillation (50 sites), as well as tachyarrhythmia/fibrillation without a preceding bradycardia (21 sites). After SCS, the number of responsive sites inducing bradycardia was reduced by 25% (62 to 47 sites), and the cycle length prolongation in residual bradycardias was reduced. The number of responsive sites inducing tachyarrhythmia was reduced by 60% (71 to 29 sites). Once elicited, residual tachyarrhythmias arose from similar epicardial foci, displaying similar dynamics (cycle length) as in control states. In the absence of SCS, bradycardias and tachyarrhythmias induced by repeat nerve stimulation were reproducible (five additional animals). After bilateral stellectomy, SCS no longer influenced neuronal induction of bradycardia and atrial tachyarrhythmias. These data indicate that SCS obtunds the induction of atrial arrhythmias resulting from excessive activation of intrinsic cardiac neurons and that such protective effects depend on the integrity of nerves coursing via the subclavian ansae and stellate ganglia.
2

Neural Control Hierarchy of the Heart Has Not Evolved to Deal With Myocardial Ischemia

Kember, G., Armour, J. A., Zamir, M. 01 August 2013 (has links)
The consequences of myo-cardial ischemia are examined from the standpoint of the neural control system of the heart, a hierarchy of three neuronal centers residing in central command, intrathoracic ganglia, and intrinsic cardiac ganglia. The basis of the investigation is the premise that while this hierarchical control system has evolved to deal with "normal" physiological circumstances, its response in the event of myocardial ischemia is unpredictable because the singular circumstances of this event are as yet not part of its evolutionary repertoire. The results indicate that the harmonious relationship between the three levels of control breaks down, because of a conflict between the priorities that they have evolved to deal with. Essentially, while the main priority in central command is blood demand, the priority at the intrathoracic and cardiac levels is heart rate. As a result of this breakdown, heart rate becomes less predictable and therefore less reliable as a diagnostic guide as to the traumatic state of the heart, which it is commonly used as such following an ischemic event. On the basis of these results it is proposed that under the singular conditions of myocardial ischemia a determination of neural control indexes in addition to cardiovascular indexes has the potential of enhancing clinical outcome.
3

Dynamic Neural Networking as a Basis for Plasticity in the Control of Heart Rate

Kember, G., Armour, J. A., Zamir, M. 01 January 2013 (has links)
A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network.
4

Neural Control Hierarchy of the Heart Has Not Evolved to Deal With Myocardial Ischemia

Kember, G., Armour, J. A., Zamir, M. 01 August 2013 (has links)
The consequences of myo-cardial ischemia are examined from the standpoint of the neural control system of the heart, a hierarchy of three neuronal centers residing in central command, intrathoracic ganglia, and intrinsic cardiac ganglia. The basis of the investigation is the premise that while this hierarchical control system has evolved to deal with "normal" physiological circumstances, its response in the event of myocardial ischemia is unpredictable because the singular circumstances of this event are as yet not part of its evolutionary repertoire. The results indicate that the harmonious relationship between the three levels of control breaks down, because of a conflict between the priorities that they have evolved to deal with. Essentially, while the main priority in central command is blood demand, the priority at the intrathoracic and cardiac levels is heart rate. As a result of this breakdown, heart rate becomes less predictable and therefore less reliable as a diagnostic guide as to the traumatic state of the heart, which it is commonly used as such following an ischemic event. On the basis of these results it is proposed that under the singular conditions of myocardial ischemia a determination of neural control indexes in addition to cardiovascular indexes has the potential of enhancing clinical outcome.
5

Dynamic Neural Networking as a Basis for Plasticity in the Control of Heart Rate

Kember, G., Armour, J. A., Zamir, M. 01 January 2013 (has links)
A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network.
6

Vagal Stimulation Targets Select Populations of Intrinsic Cardiac Neurons to Control Neurally Induced Atrial Fibrillation

Salavatian, Siamak, Beaumont, Eric, Longpré, Jean Philippe, Armour, J. Andrew, Vinet, Alain, Jacquemet, Vincent, Shivkumar, Kalyanam, Ardell, Jeffrey L. 01 January 2016 (has links)
Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)- sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P ˂ 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory.
7

Central-Peripheral Neural Network Interactions Evoked by Vagus Nerve Stimulation: Functional Consequences on Control of Cardiac Function

Ardell, Jeffrey L., Rajendran, Pradeep S., Nier, Heath A., KenKnight, Bruce H., Andrew Armour, J. 01 January 2015 (has links)
Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current-and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy.
8

Dynamic Remodeling of the Guinea Pig Intrinsic Cardiac Plexus Induced by Chronic Myocardial Infarction

Hardwick, Jean C., Ryan, Shannon E., Beaumont, Eric, Ardell, Jeffrey L., Southerland, Elizabeth M. 01 January 2014 (has links)
Myocardial infarction (MI) is associated with remodeling of the heart and neurohumoral control systems. The objective of this study was to define time-dependent changes in intrinsic cardiac (IC) neuronal excitability, synaptic efficacy, and neurochemical modulation following MI. MI was produced in guinea pigs by ligation of the coronary artery and associated vein on the dorsal surface of the heart. Animals were recovered for 4, 7, 14, or 50. days. Intracellular voltage recordings were obtained in whole mounts of the cardiac neuronal plexus to determine passive and active neuronal properties of IC neurons. Immunohistochemical analysis demonstrated an immediate and persistent increase in the percentage of IC neurons immunoreactive for neuronal nitric oxide synthase. Examination of individual neuronal properties demonstrated that afterhyperpolarizing potentials were significantly decreased in both amplitude and time course of recovery at 7. days post-MI. These parameters returned to control values by 50. days post-MI. Synaptic efficacy, as determined by the stimulation of axonal inputs, was enhanced at 7. days post-MI only. Neuronal excitability in absence of agonist challenge was unchanged following MI. Norepinephrine increased IC excitability to intracellular current injections, a response that was augmented post-MI. Angiotensin II potentiation of norepinephrine and bethanechol-induced excitability, evident in controls, was abolished post-MI. This study demonstrates that MI induces both persistent and transient changes in IC neuronal functions immediately following injury. Alterations in the IC neuronal network, which persist for weeks after the initial insult, may lead to alterations in autonomic signaling and cardiac control.
9

Angiotensin II Potentiates Adrenergic and Muscarinic Modulation of Guinea Pig Intracardiac Neurons

Girasole, Allison E., Palmer, Christopher P., Corrado, Samantha L., Southerland, Elizabeth Marie, Ardell, Jeffrey L., Hardwick, Jean C. 01 November 2011 (has links)
The intrinsic cardiac plexus represents a major peripheral integration site for neuronal, hormonal, and locally produced neuromodulators controlling efferent neuronal output to the heart. This study examined the interdependence of norepinephrine, muscarinic agonists, and ANG II, to modulate intrinsic cardiac neuronal activity. Intracellular voltage recordings from whole-mount preparations of the guinea pig cardiac plexus were used to determine changes in active and passive electrical properties of individual intrinsic cardiac neurons. Application of either adrenergic or muscarinic agonists induced changes in neuronal resting membrane potentials, decreased afterhyperpolarization duration of single action potentials, and increased neuronal excitability. Adrenergic responses were inhibited by removal of extracellular calcium ions, while muscarinic responses were inhibited by application of TEA. The adrenergic responses were heterogeneous, responding to a variety of receptor-specific agonists (phenylephrine, clonidine, dobutamine, and terbutaline), although α-receptor agonists produced the most frequent responses. Application of ANG II alone produced a significant increase in excitability, while application of ANG II in combination with either adrenergic or muscarinic agonists produced a much larger potentiation of excitability. The ANG IIinduced modulation of firing was blocked by the angiotensin type 2 (AT 2) receptor inhibitor PD 123319 and was mimicked by the AT 2 receptor agonist CGP-42112A. AT 1 receptor blockade with telmasartin did not alter neuronal responses to ANG II. These data demonstrate that ANG II potentiates both muscarinically and adrenergically mediated activation of intrinsic cardiac neurons, doing so primarily via AT 2 receptor-dependent mechanisms. These neurohumoral interactions may be fundamental to regulation of neuronal excitability within the intrinsic cardiac nervous system.
10

Localization of Multiple Neurotransmitters in Surgically Derived Specimens of Human Atrial Ganglia

Hoover, D. B., Isaacs, E. R., Jacques, F., Hoard, J. L., Pagé, P., Armour, J. A. 15 December 2009 (has links)
Dysfunction of the intrinsic cardiac nervous system is implicated in the genesis of atrial and ventricular arrhythmias. While this system has been studied extensively in animal models, far less is known about the intrinsic cardiac nervous system of humans. This study was initiated to anatomically identify neurotransmitters associated with the right atrial ganglionated plexus (RAGP) of the human heart. Biopsies of epicardial fat containing a portion of the RAGP were collected from eight patients during cardiothoracic surgery and processed for immunofluorescent detection of specific neuronal markers. Colocalization of markers was evaluated by confocal microscopy. Most intrinsic cardiac neuronal somata displayed immunoreactivity for the cholinergic marker choline acetyltransferase and the nitrergic marker neuronal nitric oxide synthase. A subpopulation of intrinsic cardiac neurons also stained for noradrenergic markers. While most intrinsic cardiac neurons received cholinergic innervation evident as punctate immunostaining for the high affinity choline transporter, some lacked cholinergic inputs. Moreover, peptidergic, nitrergic, and noradrenergic nerves provided substantial innervation of intrinsic cardiac ganglia. These findings demonstrate that the human RAGP has a complex neurochemical anatomy, which includes the presence of a dual cholinergic/nitrergic phenotype for most of its neurons, the presence of noradrenergic markers in a subpopulation of neurons, and innervation by a host of neurochemically distinct nerves. The putative role of multiple neurotransmitters in controlling intrinsic cardiac neurons and mediating efferent signaling to the heart indicates the possibility of novel therapeutic targets for arrhythmia prevention.

Page generated in 0.2343 seconds