1 |
Symbolic software for symmetry reduction and computation of invariant solutions of differential equationsOlinov, Andrey I. 24 June 2011
Problems involving partial or ordinary differential equations arise in various fields of science. Therefore, the task of obtaining exact solutions of differential equations is of primary importance, and attracts high attention. The main purpose of the current thesis is the development of a Maple-based, symbolic software package for symmetry reduction of differential equations and computation of symmetry-invariant solutions. The package developed in the current thesis is compatible with and can be viewed as an extension of the package GeM for symbolic symmetry analysis, developed by Prof. Alexei Cheviakov. The reduction procedure is based on the Lie's classical symmetry reduction method involving canonical coordinates. The developed package is applicable for obtaining solutions arising from extension of Lie's method, in particular, nonlocal and approximate symmetries.
The developed software is applied to a number of PDE problems to obtain exact invariant solutions. The considered equations include the one-dimensional nonlinear heat equation, the potential Burgers' equation, as well as equations arising in nonlinear elastostatics and elastodynamics.
|
2 |
Symbolic software for symmetry reduction and computation of invariant solutions of differential equationsOlinov, Andrey I. 24 June 2011 (has links)
Problems involving partial or ordinary differential equations arise in various fields of science. Therefore, the task of obtaining exact solutions of differential equations is of primary importance, and attracts high attention. The main purpose of the current thesis is the development of a Maple-based, symbolic software package for symmetry reduction of differential equations and computation of symmetry-invariant solutions. The package developed in the current thesis is compatible with and can be viewed as an extension of the package GeM for symbolic symmetry analysis, developed by Prof. Alexei Cheviakov. The reduction procedure is based on the Lie's classical symmetry reduction method involving canonical coordinates. The developed package is applicable for obtaining solutions arising from extension of Lie's method, in particular, nonlocal and approximate symmetries.
The developed software is applied to a number of PDE problems to obtain exact invariant solutions. The considered equations include the one-dimensional nonlinear heat equation, the potential Burgers' equation, as well as equations arising in nonlinear elastostatics and elastodynamics.
|
3 |
Symmetry methods and some nonlinear differential equations : Background and illustrative examples / Symmetrimetoder och några icke-linjära differentialekvationer : Bakgrund och illustrativa exempelGranström, Frida January 2017 (has links)
Differential equations, in particular the nonlinear ones, are commonly used in formulating most of the fundamental laws of nature as well as many technological problems, among others. This makes the need for methods in finding closed form solutions to such equations all-important. In this thesis we study Lie symmetry methods for some nonlinear ordinary differential equations (ODE). The study focuses on identifying and using the underlying symmetries of the given first order nonlinear ordinary differential equation. An extension of the method to higher order ODE is also discussed. Several illustrative examples are presented. / Differentialekvationer, framförallt icke-linjära, används ofta vid formulering av fundamentala naturlagar liksom många tekniska problem. Därmed finns det ett stort behov av metoder där det går att hitta lösningar i sluten form till sådana ekvationer. I det här arbetet studerar vi Lie symmetrimetoder för några icke-linjära ordinära differentialekvationer (ODE). Studien fokuserar på att identifiera och använda de underliggande symmetrierna av den givna första ordningens icke-linjära ordinära differentialekvationen. En utvidgning av metoden till högre ordningens ODE diskuteras också. Ett flertal illustrativa exempel presenteras.
|
4 |
Symmetry Methods and Group Invariant Solutions : Some cases of the Boltzmann equationLazarus, John Success January 2024 (has links)
We study the application of Lie symmetry methods to solve some cases of the Boltzmann equation, a cornerstone of kinetic theory. The study explores hidden invariances and symmetry-based solutions that help to clarify the complexities inherent in the structure of the equation. Moreover, the study demonstrates a novel approach to solving the equation by rewriting it using the Fourier transform in the velocity variable, which resulted in a non-trivial solution to the Boltzmann equation. The findings not only clarify the mathematical underpinnings of the Boltzmann equation but also enhance our understanding of particle interactions in gases. Overall, this thesis not only enriches the theoretical understanding of integro-differential equations through its rigorous approach but also highlights the efficacy of Lie symmetry methods in unraveling the complexities of fundamental equations in physical sciences.
|
5 |
Analyse de groupe d’un modèle de la plasticité idéale planaire et sur les solutions en termes d’invariants de Riemann pour les systèmes quasilinéaires du premier ordreLamothe, Vincent 11 1900 (has links)
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir
des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée.
Elle est applicable directement à des systèmes non-homogènes et non-autonomes
sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite. / The objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of
several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic
conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
|
6 |
Analyse de groupe d’un modèle de la plasticité idéale planaire et sur les solutions en termes d’invariants de Riemann pour les systèmes quasilinéaires du premier ordreLamothe, Vincent 11 1900 (has links)
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir
des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée.
Elle est applicable directement à des systèmes non-homogènes et non-autonomes
sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite. / The objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of
several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic
conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
|
Page generated in 0.105 seconds