1 |
Charakterizace poly(1,4-diethynylbenzen)u metodou IGC / Characterization of poly(1,4-diethynylbenzene) by IGC methodPetrášová, Sabina January 2011 (has links)
Poly(1,4-diethynylbenzene) ( -conjugated polymer) was prepared as an insoluble polymer network via chain coordination polymerization of 1,4-diethynylbezene catalyzed with [Rh(NBD)acac] complex. Thermodynamic properties and acid-base characteristics of the prepared poly(1,4-diethynylbenzene) were studied by means of Inverse Gas Chromatography (IGC) in the temperature range 80-100 řC. Retention data of selected testing substances were used to determine the Gibbs energy of sorption, the sorption enthalpy and their acid-base and disperse parts as well as the disperse contribution to the surface energy and parameters of KA, KD, ANHPS and DNHPS quantifying the acid-base character of the studied polymer. The results showed that poly(1,4-diethynylbenzene) interacted more efficiently with Lewis bases than with Lewis acids. The values of experimental sorption enthalpy were used for the determination of the parameters KA and KD. Values of these parameters classify poly(1,4-diethynylbenzene) as the material with a slightly acid character. This conclusion is further supported by the results of H. P. Schreiber method based on the application of ANHPS and DNHPS parameters for the evaluation of the acid-base properties of the material. The infrared spectroscopy proved that poly(1,4-diethynylbenzene) contained...
|
2 |
Caractérisation biochimique d’exopolymères d’origine algale du bassin de Marennes-Oléron et étude des propriétés physico-chimiques de surface de micro-organismes impliquées dans leur adhésion / Biochemical characterization of algal exopolymers from Marennes-Oléron and study of the physico-chemical surface properties of microorganisms involved in their adhesionPierre, Guillaume 06 December 2010 (has links)
Le principal objectif de cette thèse était de mieux comprendre l’importance des Substances Polymériques Extracellulaires (SPE) dans la structuration et la formation des biofilms benthiques ; tout en s’inscrivant dans une étude plus globale des mécanismes écologiques impliqués dans le fonctionnement des vasières intertidales. La mise au point des dosages biochimiques a été effectuée sur le mucilage de l’algue Chaetomorpha aerea et a permis en parallèle de purifier un polysaccharide sulfaté riche en galactose, présentant une activité bactéricide sélective contre la souche Staphylococcus aureus (ATCC 25923). Les études biochimiques et écologiques menées sur les SPE extraits de la vasière charentaise ont ensuite permis de quantifier leur dynamique de production et leur composition, en fonction des conditions environnementales. La présence de désoxy-sucres et d’acides uroniques au sein des SPE capsulaires a laissé supposer que ces fractions jouaient un rôle important dans la formation et le devenir du biofilm microphytobenthique. La dernière partie des travaux a permis de caractériser les propriétés acide/base de Lewis et hydrophile/hydrophobe de la surface de la micro-algue Navicula jeffreyi, impliquée dans la formation de biofilms benthiques, par des méthodes classiques d’analyse. L’utilisation d’une nouvelle méthode, la Chromatographie Gazeuse Inverse (CGI), a permis d’obtenir des résultats intéressants et relativement similaires, confirmant le caractère prometteur de la CGI pour l’étude des propriétés de surface des micro-organismes. / The main goal of this thesis was to better understand the importance of Extracellular Polymeric Substances (EPS) in the structuring and formation of benthic biofilms; while considering a global conception of the ecological mechanisms involved in the functioning of intertidal mudflats. The development of the biochemical assays was done on the mucilage of the macroalgae Chaetomorpha aerea and allowed purifying a polysaccharide rich in galactose, showing a selective bactericidal activity against Staphylococcus aureus (ATCC 25923). Then, the biochemical and ecological studies concerning the EPS extracted from the local mudflat allowed studying their dynamic of production and composition in relation to environmental conditions. The presence of deoxy sugars and uronic acids in the bound EPS highlighted their important roles during the formation and the life of microphytobenthic biofilms. The last part of the work was used to characterize the acid/base of Lewis and hydrophilic/hydrophobic surface properties of the microalgae Navicula jeffreyi, involved in the formation of benthic biofilms, by using classical analysis methods. The use of a new method, named Inverse Gas Chromatography (IGC), allowed getting interesting and relatively similar results, confirming the potential of the method to study the surface properties of microorganisms.
|
3 |
Surface characterisation of thermally modified spruce wood and influence of water vapour sorptionKällbom, Susanna January 2015 (has links)
Today there is growing interest within the construction sector to increase the proportion of biobased building materials made from renewable resources. By-products or residuals from wood processing could in this case be valuable resources for manufacturing new types of biocomposites. An important research question related to wood-based biocomposites is how to characterise molecular interactions between the different components in the composite. The hygroscopic character of wood and its water sorption properties are also crucial. Thermal modification (or heat treatment) of wood results in a number of enhanced properties such as reduced hygroscopicity and improved dimensional stability as well as increased resistance to microbiological decay. In this thesis, surface characteristics of thermally modified wood components (often called wood fibres or particles) and influencing effects from moisture sorption have been analysed using a number of material characterisation techniques. The aim is to increase the understanding in how to design efficient material combinations for the use of such wood components in biocomposites. The specific objective was to study surface energy characteristics of thermally modified spruce (Picea abies Karst.) under influences of water vapour sorption. An effort was also made to establish a link between surface energy and surface chemical composition. The surface energy of both thermally modified and unmodified wood components were studied at different surface coverages using inverse gas chromatography (IGC), providing information about the heterogeneity of the surface energy. The water vapour sorption behaviour of the wood components was studied using the dynamic vapour sorption (DVS) method, and their surface chemical composition was studied by means of X-ray photoelectron spectroscopy (XPS). Additionally, the morphology of the wood components was studied with scanning electron microscopy (SEM). The IGC analysis indicated a more heterogeneous surface energy character of the thermally modified wood compared with the unmodified wood. An increase of the dispersive surface energy due to exposure to an increased relative humidity (RH) from 0% to 75% RH at 30 ˚C was also indicated for the modified samples. The DVS analysis indicated an increase in equilibrium moisture content (EMC) in adsorption due to the exposure to 75% RH. Furthermore, the XPS results indicated a decrease of extractable and a relative increase of non-extractable compounds due to the exposure, valid for both the modified and the unmodified wood. The property changes due to the increased RH condition and also due to the thermal modification are suggested to be related to alterations in the amount of accessible hydroxyl groups in the wood surface. Recommendations for future work and implications of the results could be related to knowledge-based tailoring of new compatible and durable material combinations, for example when using thermally modified wood components in new types of biocomposites for outdoor applications. / <p>Forskningsfinansiärer och strategiska forskningsprojekt:</p><p>Nils och Dorthi Troëdssons forskningsfond (Projektnr 793/12 Hydro-termo-mekanisk modifiering av trä).</p><p> KTH Royal Institute of Technology.</p><p> COST Action FP0904.</p><p> KK-Stiftelsen.</p><p>Stiftelsen för strategiskt forskning (SSF). QC 20150908</p>
|
Page generated in 0.0902 seconds