• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 169
  • 98
  • 66
  • 16
  • 11
  • 5
  • 2
  • 2
  • Tagged with
  • 391
  • 391
  • 136
  • 55
  • 54
  • 54
  • 53
  • 45
  • 39
  • 38
  • 34
  • 32
  • 31
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Electromagnetic induction spectroscopy for the detection of subsurface targets

Wei, Mu-Hsin 06 November 2012 (has links)
This thesis presents a robust method for estimating the relaxations of a metallic object from its electromagnetic induction (EMI) response. The EMI response of a metallic object can be accurately modeled by a sum of real decaying exponentials. However, it is difficult to obtain the model parameters from measurements when the number of exponentials in the sum is unknown or the terms are strongly correlated. Traditionally, the relaxation constants are estimated by nonlinear iterative search that often leads to unsatisfactory results. An effective EMI modeling technique is developed by first linearizing the problem through enumeration and then solving the linearized model using a sparsity-regularized minimization. This approach overcomes several long-standing challenges in EMI signal modeling, including finding the unknown model order as well as handling the ill-posed nature of the problem. The resulting algorithm does not require a good initial guess to converge to a satisfactory solution. This new modeling technique is extended to incorporate multiple measurements in a single parameter estimation step. More accurate estimates are obtained by exploiting an invariance property of the EMI response, which states that the relaxation frequencies do not change for different locations and orientations of a metallic object. Using tests on synthetic data and laboratory measurement of known targets, the proposed multiple-measurement method is shown to provide accurate and stable estimates of the model parameters. The ability to estimate the relaxation constants of targets enables more robust subsurface target discrimination using the relaxations. A simple relaxation-based subsurface target detection algorithm is developed to demonstrate the potential of the estimated relaxations.
152

定常熱伝導場における境界形状決定

片峯, 英次, Katamine, Eiji, 畔上, 秀幸, Azegami, Hideyuki, 小嶋, 雅美, Kojima, Masami 01 1900 (has links)
No description available.
153

Combination Of Conventional Regularization Methods And Genetic Algorithms For Solving The Inverse Problem Of Electrocardiography

Sarikaya, Sedat 01 February 2010 (has links) (PDF)
Distribution of electrical potentials over the surface of the heart, i.e., the epicardial potentials, is a valuable tool to understand whether there is a defect in the heart. However, it is not easy to detect these potentials non-invasively. Instead, body surface potentials, which occur as a result of the electrical activity of the heart, are measured to diagnose heart defects. However the source electrical signals loose some critical details because of the attenuation and smoothing they encounter due to body tissues such as lungs, fat, etc. Direct measurement of these epicardial potentials requires invasive procedures. Alternatively, one can reconstruct the epicardial potentials non-invasively from the body surface potentials / this method is called the inverse problem of electrocardiography (ECG). The goal of this study is to solve the inverse problem of ECG using several well-known regularization methods and using their combinations with genetic algorihm (GA) and finally compare the performances of these methods. The results show that GA can be combined with the conventional regularization methods and their combination improves the regularization of ill-posed inverse ECG problem. In several studies, the results show that their combination provide a good scheme for solving the ECG inverse problem and the performance of regularization methods can be improved further. We also suggest that GA can be initiated succesfully with a training set of epicardial potentials, and with the optimum, over- and under-regularized Tikhonov regularization solutions.
154

不均質場における地下水状態の時空間変動過程に関する研究

原田, 守博, HARADA, Morihiro 08 December 1989 (has links)
名古屋大学博士学位論文 学位の種類:工学博士 (論文) 学位授与年月日:平成1年12月8日
155

An Acoustically Oriented Vocal-Tract Model

ITAKURA, Fumitada, TAKEDA, Kazuya, YEHIA, Hani C. 20 August 1996 (has links)
No description available.
156

Parameter identification problems for elastic large deformations - Part I: model and solution of the inverse problem

Meyer, Marcus 20 November 2009 (has links) (PDF)
In this paper we discuss the identification of parameter functions in material models for elastic large deformations. A model of the the forward problem is given, where the displacement of a deformed material is found as the solution of a n onlinear PDE. Here, the crucial point is the definition of the 2nd Piola-Kirchhoff stress tensor by using several material laws including a number of material parameters. In the main part of the paper we consider the identification of such parameters from measured displacements, where the inverse problem is given as an optimal control problem. We introduce a solution of the identification problem with Lagrange and SQP methods. The presented algorithm is applied to linear elastic material with large deformations.
157

COMPRESSIVE IMAGING FOR DIFFERENCE IMAGE FORMATION AND WIDE-FIELD-OF-VIEW TARGET TRACKING

Shikhar January 2010 (has links)
Use of imaging systems for performing various situational awareness tasks in militaryand commercial settings has a long history. There is increasing recognition,however, that a much better job can be done by developing non-traditional opticalsystems that exploit the task-specific system aspects within the imager itself. Insome cases, a direct consequence of this approach can be real-time data compressionalong with increased measurement fidelity of the task-specific features. In others,compression can potentially allow us to perform high-level tasks such as direct trackingusing the compressed measurements without reconstructing the scene of interest.In this dissertation we present novel advancements in feature-specific (FS) imagersfor large field-of-view surveillence, and estimation of temporal object-scene changesutilizing the compressive imaging paradigm. We develop these two ideas in parallel.In the first case we show a feature-specific (FS) imager that optically multiplexesmultiple, encoded sub-fields of view onto a common focal plane. Sub-field encodingenables target tracking by creating a unique connection between target characteristicsin superposition space and the target's true position in real space. This isaccomplished without reconstructing a conventional image of the large field of view.System performance is evaluated in terms of two criteria: average decoding time andprobability of decoding error. We study these performance criteria as a functionof resolution in the encoding scheme and signal-to-noise ratio. We also includesimulation and experimental results demonstrating our novel tracking method. Inthe second case we present a FS imager for estimating temporal changes in the objectscene over time by quantifying these changes through a sequence of differenceimages. The difference images are estimated by taking compressive measurementsof the scene. Our goals are twofold. First, to design the optimal sensing matrixfor taking compressive measurements. In scenarios where such sensing matrices arenot tractable, we consider plausible candidate sensing matrices that either use theavailable <italic>a priori</italic> information or are non-adaptive. Second, we develop closed-form and iterative techniques for estimating the difference images. We present results to show the efficacy of these techniques and discuss the advantages of each.
158

Using the singularity frequencies of guided waves to obtain a pipe's properties and detect and size notches

Stoyko, Darryl 30 October 2012 (has links)
A survey of relevant literature on the topic of wave propagation and scattering in pipes is given first. This review is followed by a theoretical framework which is pertinent to wave propagation in homogeneous, isotropic, pipes. Emphasis is placed on approximate solutions stemming from a computer based, Semi-Analytical Finite Element (SAFE) formulation. A modal analysis of the dynamic response of homogeneous, isotropic pipes, when subjected to a transient ultrasonic excitation, demonstrates that dominant features, i.e., singularities in an unblemished pipe’s displacement Frequency Response Function (FRF) coincide with its cutoff frequencies. This behaviour is confirmed experimentally. A novel technique is developed to deduce such a pipe’s wall thickness and elastic properties from three cutoff frequencies. The resulting procedure is simulated numerically and verified experimentally. Agreement between the new ultrasonic procedure and traditional destructive tests is within experimental uncertainty. Then a hybrid-SAFE technique is used to simulate waves scattered by various open rectangular notches. The simulations show, for the first time, that singularities distinct from the unblemished pipe’s cutoff frequencies arise in a displacement FRF when an axisymmetric notch is introduced. They also suggest that the new singularities depend on the properties of the parent pipe and the finite element region but effects are local to a notch. It is demonstrated further that the difference between the frequency at which a singularity introduced by a notch occurs and the nearest corresponding unblemished pipe’s cutoff frequency is a function of the notch’s dimensions. By plotting contours of constant frequency differences, it is shown that it is usually possible to characterize the notch’s dimensions by using two modes. However, the frequency difference for a third mode may be also needed occasionally. The more general case of nonaxisymmetric notches is shown to be a straightforward extension of the axisymmetric case.
159

Using the singularity frequencies of guided waves to obtain a pipe's properties and detect and size notches

Stoyko, Darryl 30 October 2012 (has links)
A survey of relevant literature on the topic of wave propagation and scattering in pipes is given first. This review is followed by a theoretical framework which is pertinent to wave propagation in homogeneous, isotropic, pipes. Emphasis is placed on approximate solutions stemming from a computer based, Semi-Analytical Finite Element (SAFE) formulation. A modal analysis of the dynamic response of homogeneous, isotropic pipes, when subjected to a transient ultrasonic excitation, demonstrates that dominant features, i.e., singularities in an unblemished pipe’s displacement Frequency Response Function (FRF) coincide with its cutoff frequencies. This behaviour is confirmed experimentally. A novel technique is developed to deduce such a pipe’s wall thickness and elastic properties from three cutoff frequencies. The resulting procedure is simulated numerically and verified experimentally. Agreement between the new ultrasonic procedure and traditional destructive tests is within experimental uncertainty. Then a hybrid-SAFE technique is used to simulate waves scattered by various open rectangular notches. The simulations show, for the first time, that singularities distinct from the unblemished pipe’s cutoff frequencies arise in a displacement FRF when an axisymmetric notch is introduced. They also suggest that the new singularities depend on the properties of the parent pipe and the finite element region but effects are local to a notch. It is demonstrated further that the difference between the frequency at which a singularity introduced by a notch occurs and the nearest corresponding unblemished pipe’s cutoff frequency is a function of the notch’s dimensions. By plotting contours of constant frequency differences, it is shown that it is usually possible to characterize the notch’s dimensions by using two modes. However, the frequency difference for a third mode may be also needed occasionally. The more general case of nonaxisymmetric notches is shown to be a straightforward extension of the axisymmetric case.
160

放熱量最大化を目的とした非定常熱伝導場の形状最適化

AZEGAMI, Hideyuki, IWATA, Yutaro, KATAMINE, Eiji, 畔上, 秀幸, 岩田, 侑太朗, 片峯, 英次 07 1900 (has links)
No description available.

Page generated in 0.0574 seconds