• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 42
  • 33
  • 8
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 421
  • 421
  • 294
  • 135
  • 102
  • 102
  • 83
  • 66
  • 57
  • 56
  • 44
  • 42
  • 42
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries

Meng, Shirley Y., Li, Yi, Ceder, Gerbrand 01 1900 (has links)
Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al₈₀Ni&#x2081₀La&#x2081₀ was found to have a low first cycle capacity of about 100 Ah/Kg. The considerable amount of intermetallic formed in the amorphous glass makes the aluminum inactive towards the lithium. The ball milled Al₈₈Ni₉Y₃ powders contain pure aluminum crystalline particles in the amorphous matrix and have first cycle capacity of about 500 Ah/Kg. Nevertheless, polarization was caused by oxidation introduced by the ball-milling process. The electrochemical performances of these amorphous metallic glasses need to be further investigated. Their full lithium insertion capacities cannot be confirmed until the compositions and particle size inside the metallic glass anodes, the conformation of the electrodes and the mechanical milling processes are optimized. / Singapore-MIT Alliance (SMA)
12

Nanostructuring silicon and germanium for high capacity anodes in lithium ion batteries

Harris, Justin Thomas 30 January 2013 (has links)
Colloidally synthesized silicon (Si) and germanium (Ge) were explored as high capacity anode materials in lithium ion batteries. a-Si:H particles were synthesized through the thermal decomposition of trisilane in supercritical n-hexane. Precise control over particle size and hydrogen content was demonstrated. Particles ranged in size from 240-1500 nm with hydrogen contents from 10-60 atomic%. Particles with low hydrogen content had some degree of local ordering and were easily crystallized during Raman spectroscopy. The as-synthesized particles did not perform well as an anode material due to low conductivity. Increasing surface conductivity led to enhanced lithiation potential. Cu nanoparticles were deposited on the surface of the a-Si:H particles through a hydrogen facilitated reduction of Cu salts. The resulting Cu coated particles had a lithiation capacity seven times that of pristine a-Si:H particles. Monophenylsilane (MPS) grown Si nanowire paper was annealed under forming gas to reduce a polyphenylsilane shell into conductive carbon. The resulting paper required no binder or carbon additive and achieved capacities of 804 mA h/g vs 8 mA h/g for unannealed wires. Si and Ge heterostructures were explored to take advantage of the higher inherent conductivity of Ge. Ge nanowires were successfully coated with a-Si by thermal decomposition of trisilane on their surface, forming Ge@a-Si core shell structures. The capacity increased with increasing Si loading. The peak lithiation capacity was 1850 mA h/g after 20 cycles – higher than the theoretical capacity of pure Ge. MPS additives created a thin amorphous shell on the wire surfaces. By incubating the wires after MPS addition the shell was partially reduced, conductivity increased, and a 75% increase in lithiation capacity was observed for the nanowire paper. The syntheses of Bi and Au nanoparticles were also explored. Highly monodisperse Bi nanocrystals were produced with size control from 6-18 nm. The Bi was utilized as seeds for the SLS synthesis of Ge nanorods and copper indium diselenide (CuInSe2) nanowires. Sub 2 nm Au nanocrystals were synthesized. A SQUID magnetometer probed their magnetic behavior. Though bulk Au is diamagnetic, the Au particles were paramagnetic. Magnetic susceptibility increased with decreasing particle diameter. / text
13

Understanding the electrochemical properties and safety characteristics of spinel cathodes for lithium-ion batteries

Chemelewski, Katharine Rose 23 October 2013 (has links)
Manganese spinel cathodes LiMn₂O₄ offer the advantage of a strong, edge-shared octahedral framework with fast, 3-dimensional Li⁺-ion conduction. To better understand the safety of these materials, the thermal stability characteristics of spinel oxide and oxyfluoride cathodes Li[subscript 1.1]Mn[subscript 1.9-y]M[subscript y]O₄[subscript-z]F[subscript z] (M = Ni and Al, 0 ≤ y ≤ 0.3, and 0 ≤ z ≤ 0.2) have been investigated systematically. The thermal characteristics are assessed in terms of the onset temperature and reaction enthalpy for the exothermic reaction. The thermal stability increases with decreasing lithium content in the cathode in the charged state. High-voltage spinel cathodes LiMn[subscript 1.5]Ni[subscript 0.5]O₄ are promising candidates for electric vehicles and stationary storage of electricity produced by renewable energies due to their high power capability. However, widespread adoption of this high-voltage spinel cathode is hampered by severe capacity fade resulting from aggressive reaction with the electrolyte to form a thick solid-electrolyte interphase (SEI) layer. The synthesis conditions of the co-precipitation method are found to influence the microstructure and morphology through nucleation and growth of crystals in solution. Two samples prepared by similar wet-chemical routes have been characterized by microscopy and electrochemical methods to determine the role of microstructure and morphology on the electrochemical performance. It is found that the surface crystal planes play a key role in the capacity retention and rate performance. In order to achieve consistent electrochemical properties essential for the commercialization of the high-voltage spinel cathode LiMn[subscript1.5]Ni[subscript 0.5]O₄, the relationship between cation ordering, presence of impurity phase, and particle morphology must be elucidated. Accordingly, comparison of the stoichiometric LiMn[subscript1.5]Ni[subscript 0.5]O₄ cathodes with a Mn/Ni ratio of 3.0 prepared by different methods having varying morphologies and degrees of cation ordering is presented. It is found that although an increase in the degree of cation ordering decreases the rate capability, the crystallographic planes in contact with the electrolyte have a dominant effect on the electrochemical properties. To examine the effect of cation substitution on morphology, an investigation of the nucleation and growth of doped co-precipitated mixed-metal hydroxide precursor particles and the resulting stabilization of preferred crystallographic surface planes in the final spinel samples are presented. It is found that doping with certain cations stabilizes the growth of low-energy (111) surface planes, facilitating a long cycle life and fast high-rate performance. With an aim to develop a better understanding of the factors influencing the electrochemical properties, a systematic investigation of LiMn[subscript 1.5]Ni[subscript0.5-x]M[subscript x]O₄ (M = Cu and Zn and x = 0.08 and 0.16), in which Ni²⁺ ions are substituted by divalent Cu2+ and Zn2+ ions, is presented. It is found that although both Zn and Cu are divalent with ionic radii similar to that of Ni2+, they behave quite differently with respect to cation ordering and site occupancy, and higher levels of doping leads to distinct differences in cycling and rate performances. / text
14

Nickel-Seeded Silicon Nanowires Grown on Graphene as Anode Material for Lithium Ion Batteries

Elsayed, Abdel Rahman 12 May 2015 (has links)
There is a growing interest for relying on cleaner and more sustainable energy sources due to the negative side-effects of the dominant fossil-fuel based energy storage and conversion systems. Cleaner, electrochemical energy storage through lithium-ion batteries has gained considerable interest and market value for applications such as electric vehicles and renewable energy storage. However, capacity and rate (power) limitations of current lithium-ion battery technology hinder its ability to meet the high energy demands in a competitive and reliable fashion. Silicon is an element with very high capacity to Li-ion storage although commercially impractical due to its poor stability and rate capabilities. Nevertheless, it has been heavily researched with more novel electrode nanostructures to improve its stability and rate capability. It was found that silicon nanomaterials such as silicon nanowires have inherently higher stability due to mitigation of cracking and higher rate capability due to the short Li-ion diffusion distance. However, electrode compositions based only on silicon nanowires without additional structural features and a high conductive support do not have enough stability and rate capability for successful commercialization. One structural and conductive support of silicon materials studied in literature is graphene. Graphene-based electrodes have been reported as material capable of rapid electron transport enabling new strides in rate capabilities for Li ion batteries. This thesis presents a novel electrode nanostructure with a simple, inexpensive, scalable method of silicon nanwire synthesis on graphene nanosheets via nickel catalyst. The research herein shows the different electrode compositions and variables studied to yield the highest achievable capacity, stability and rate capability performance. The carbon coating methodology in addition to enhancing the 3D conductivity of the electrode by replacing typical binders with pyrolyzed polyacrylonitrile provided the highest performance results.
15

Self-discharge of Rechargeable Hybrid Aqueous Battery

Konarov, Aishuak 05 1900 (has links)
This thesis studies the self-discharge performance of recently developed rechargeable hybrid aqueous batteries, using LiMn2O4 as a cathode and Zinc as an anode. It is shown through a variety of electrochemical and ex-situ analytical techniques that many parts of the composite cathode play important roles on the self-discharge of the battery. It was determined that the current collector must be passive towards corrosion, and polyethylene was identified as the best option for this application. The effect of amount and type of conductive agent was also investigated, with low surface area carbonaceous material giving best performances. It was also shown that the state of charge has strong effects on the extension of self-discharge. More importantly, this study shows that the self-discharge mechanism in the ReHAB system involves the cathode active material and contains a reversible and an irreversible part. The reversible portion is predominant and is due to lithium re-intercalation into the LiMn2O4 spinel framework, and results from Zn dissolution into the electrolyte, which drives the Li+ ions out of the solution. The irreversible portion of the self-discharge occurs as a result of the decomposition of the LiMn2O4 material in the presence of the acidic electrolyte, and is much less extensive than the reversible process.
16

Binder-free oxide nanotube electrodes for high energy and power density 3D Li-ion microbatteries / Titanbaserade nanotuber för tredimensionella elektoder i litiumjonbatterier

Ihrfors, Charlotte January 2014 (has links)
This thesis covers synthesis and characterisation of TiO2 nanotubes and TiO2 / Li4Ti5O12 composite nanotubes. The aim was to build batteries with high areal capacity and good rate capability. TiO2 nanotubes were synthesized by two step anodization of titanium metal foil and the composite electrodes were synthesized through electrochemical lithiation of TiO2 nanotubes. To improve the battery performance the TiO2 nanotubes were annealed at 350 °C in air atmosphere, while the composite electrodes were annealed in argon at 550 °C. The longest TiO2 nanotubes were measured to 42.5 μm. The 40 μm long nanotubes displayed an areal capacity of 1.0 mAh/cm2 and a gravimetric capacity of 89 mAh/g. Nanotubes having a length of 10 μm had an areal capacity of 0.33 mAh/cm2 and a gravimetriccapacity of 130 mAh/g. When cycled at high rates, 10C, the capacity of the 40 μm nanotubes was 0.25 mAh/cm2, using a current density of 9.3 mA. The capacity of the 40 μm long nanotubes were higher than for the 10 μm long, but the increase was not proportional to the increase in length. A composite electrode was successfully synthesized and was found to have a capacity of 0.25 mAh/cm2 at a rate of C/5.
17

Structural Changes in Lithium Battery Materials Induced by Aging or Usage

Eriksson, Rickard January 2015 (has links)
Li-ion batteries have a huge potential for use in electrification of the transportation sector. The major challenge to be met is the limited energy storage capacity of the battery pack: both the amount of energy which can be stored within the space available in the vehicle (defining its range), and the aging of the individual battery cells (determining how long a whole pack can deliver sufficient energy and power to drive the vehicle). This thesis aims to increase our knowledge and understanding of structural changes induced by aging and usage of the Li-ion battery materials involved. Aging processes have been studied in commercial-size Li-ion cells with two different chemistries. LiFePO4/graphite cells were aged under different conditions, and thereafter examined at different points along the electrodes by post mortem characterisation using SEM, XPS, XRD and electrochemical characterization in half-cells. The results revealed large differences in degradation behaviour under different aging conditions and in different regions of the same cell. The aging of LiMn2O4-LiCoO2/Li4Ti5O12 cells was studied under two different aging conditions. Post mortem analysis revealed a high degree of Mn/Co mixing within individual particles of the LiMn2O4-LiCoO2 composite electrode. Structural changes induced by lithium insertion were studied in two negative electrode materials: in Li0.5Ni0.25TiOPO4 using in situ XRD, and in Ni0.5TiOPO4 using EXAFS, XANES and HAXPES. It was shown that Li0.5Ni0.25TiOPO4 lost most of its long-range-order during lithiation, and that both Ni and Ti were involved in the charge compensation mechanism during lithiation/delithiation of Ni0.5TiOPO4, with small clusters of metal-like Ni forming during lithiation. Finally, in situ XRD studies were also made of the reaction pathways to form LiFeSO4F from two sets of reactants: either FeSO4·H2O and LiF, or Li2SO4 and FeF2. During the heat treatment, Li2SO4 and FeF2 react to form FeSO4·H2O and LiF in a first step. In a second step LiFeSO4F is formed. This underlines the importance of the structural similarities between LiFeSO4F and FeSO4·H2O in the formation process of LiFeSO4F.
18

Lithium manganese oxide modified with copper-gold nanocomposite cladding- a potential novel cathode material for spinel type lithium-ion batteries

Nzaba, Sarre Kadia Myra January 2014 (has links)
>Magister Scientiae - MSc / Spinel lithium manganese oxide (LiMn2O4), for its low cost, easy preparation and nontoxicity, is regarded as a promising cathode material for lithium-ion batteries. However, a key problem prohibiting it from large scale commercialization is its severe capacity fading during cycling. The improvement of electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion (Robertson et al., 1997) at the surface of the spinel LiMn2O4 particles. These side reactions result in Mn2+ dissolution mainly at the surface of the cathode during cycling, therefore surface modification of the cathode is deemed an effective way to reduce side reactions. The utilization of a nanocomposite which comprises of metallic Cu and Au were of interest because their oxidation gives rise to a variety of catalytically active configurations which advances the electrochemical property of Li-ion battery. In this research study, an experimental strategy based on doping the LiMn2O4 with small amounts of Cu-Au nanocomposite cations for substituting the Mn3+ ions, responsible for disproportionation, was employed in order to increase conductivity, improve structural stability and cycle life during successive charge and discharge cycles. The spinel cathode material was synthesized by coprecipitation method from a reaction of lithium hydroxide and manganese acetate using 1:2 ratio. The Cu-Au nanocomposite was synthesized via a chemical reduction method using copper acetate and gold acetate in a 1:3 ratio. Powder samples of LiMxMn2O4 (M = Cu-Au nanocomposite) was prepared from a mixture of stoichiometric amounts of Cu-Au nanocomposite and LiMn2O4 precursor. The novel LiMxMn2O4 material has a larger surface area which increases the Li+ diffusion coefficient and reduces the volumetric changes and lattice stresses caused by repeated Li+ insertion and expulsion. Structural and morphological sample analysis revealed that the modified cathode material have good crystallinity and well dispersed particles. These results corroborated the electrochemical behaviour of LiMxMn2O4 examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The diffusion coefficients for LiMn2O4 and LiMxMn2-xO4 obtained are 1.90 x10-3 cm2 / s and 6.09 x10-3 cm2 / s respectively which proved that the Cu-Au nanocomposite with energy band gap of 2.28 eV, effectively improved the electrochemical property. The charge / discharge value obtained from integrating the area under the curve of the oxidation peak and reduction peak for LiMxMn2-xO4 was 263.16 and 153.61 mAh / g compared to 239.16 mAh / g and 120 mAh / g for LiMn2O4. It is demonstrated that the presence of Cu-Au nanocomposite reduced side reactions and effectively improved the electrochemical performance of LiMn2O4.
19

Fabrication and inorganic modification of 3D carbon nanotube structures for applications in energy storage

Jessl, Sarah January 2018 (has links)
Structured electrodes with tailored nanoscale morphology and chemistry are highly desirable for a range of applications. In particular, emerging energy storage applications such as thick Lithium-ion battery (LIB) electrodes and photoanodes for watersplitting require new electrode structures that simultaneously optimise electron, ion, and thermal transport. In this PhD thesis, advanced structured electrodes are fabricated by creating 3D carbon-inorganic hybrid architectures. In this process, patterned vertically aligned carbon nanotubes (CNT) were used as the structural scaffolds to shape the electrodes while inheriting the excellent thermal and electrical properties of CNTs. First, UV and colloidal lithographic patterning processes were developed to create micro- and nanopores respectively within the CNT structures. Those structures provide high surface area and conductive backbone for the synthesis of hybrid CNT-inorganic structures. Specifically, the parameter space to create honeycomb shaped CNT structures with pores ranging from 300~nm to 30~$\mu$m has been established. Next, the micro-pore CNT structures have been chemically modified with iron oxide using microwave-assisted, hydrothermal synthesis for fabricating high areal loading LIB anodes. The areal loading was increased by 120\% compared to a standard battery film while at the same time retaining a high capacity (900 mAhg$^{-1}$ at 0.2 C). Then thick electrodes with optimised diffusion pathways were created by coating the nanopatterned CNTs with silicon using physical vapour deposition. These electrode structures are up to 50\% thicker than previously reported structures and still retain a stable capacity (650 mAhg$^{-1}$) and a good high-rate performance. Finally, the honeycomb shaped CNT structures have been coated with bismuth vanadate using a hotcasting process and the electrode architecture has been optimized for good conductivity by the addition of a Pd/Au layer between the CNTs and the BiVO$_{4}$. The photoelectrode performance was measured and shows a clear increase in current density when exposed to light. Each of these novel electrodes illustrate how patterning vertically aligned carbon nanotube structures combined with inorganic surface modification enables the creation of advanced electrodes with new formfactors and improved performance in comparison to literature and to classic drop-casted battery films of the same materials.
20

New advanced electrode materials for lithium-ion battery

Li, Da January 2018 (has links)
This thesis includes five main studies/ first, in order to enhance the conductivity of LiTi204, a new doping strategy is used and LiTi204−xCx ramsdellite is successfully fabricated. It is found that unit cell parameters a and b decline while c increases with more carbon inserted. The conductivity of LiTi204−xCx increases with more carbon insertion. Material with more carbon shows better reversibility and lower electrochemical polarization observed from potentiostatic curve. The material has better retention rate and rate ability with more carbon substitute doped. LiTi203.925C0.0375 has 151 mAh∙g−1 capacity under current density of 100 mAh∙g−1 and capacity decreased by 5.57% after 100 cycles. Second, in order to improve the capacity of LiTi204−xCx, Ti204−xCx is successfully fabricated through topotactic oxidation. It is found that the lattice parameters b and c decline while a keeps stable. With more carbon inserted, the retention ability increases. Ti01.9625C0.0375 has the capacity 320 mAh∙g−1 under 200 mAh∙g−1 and capacity retention loss by 9.1% per 100 cycles due to the balance of high conductivity and disordered channel resistance. Third, in order to study the process of lithium insertion, the structures and the atom sites of LiTi204−xCx ( R ) are obtained through refinement of the neutron diffraction patterns. The unit cell parameters a and b increase while c keeps stable for more lithium, atoms insertion. The channels for lithium insertion become wider and more round with lithium arranged in a line when x rises in the range of 0 < x < 0.5. When the x increases to 1, the channels turn into ordered parallelogram. Fourth, the lithium-contained spinelloid (a potential cathode material) is explored, but it is not found in this work. But spinels LI1−0.5xFe2.5xM1−xP1−xO4 (M=Fe, Co, Ni, Mn) are found and phosphorous insertion makes the structure stable during cycling. At last, to enhance the energy density, the 3D electrode is fabricated in in-situ growth by infiltration method. By powder infiltration, the load of activity material reaches over 60% of electrode mass. The morphology is porous and the particle size of the activity material is 20nm. The energy density based on LiCoO2 (250 WH∙g−1) is much higher than that of the traditional (200 WH∙g−1) 2D electrode reported.

Page generated in 0.067 seconds