• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing Ion Gels as Solid Electrolyte for Organic Electrochemical Transistors

Skowrons, Michael Anthony 22 November 2021 (has links)
No description available.
2

Nano-Confined Room-Temperature Ionic Liquids for Electrochemical Applications

He, Yadong 28 February 2018 (has links)
Room-temperature ionic liquids (RTILs) and their derivatives are promising electrolytes for electrochemical devices including supercapacitors. Understanding the behavior of RTILs in these devices is critical for improving their performance. The energy density of supercapacitors can be improved greatly by using RTILs as electrolytes and nanoporous carbon as electrodes, but the mechanism of the charge storage using these materials is not well understood. In this dissertation, the diffusion and charging dynamics of RTILs in nanopores are studied. The results show that ion packing typically plays the most important role in ion diffusion. The study also demonstrates that the cyclic charging and discharging of a pore can exhibit a number of interesting features (e.g., sloshing of ionic charge along the pores during cyclic scans), which help explain experimental observations such as the negligible contribution of co-ions to charge storage at high scan rates. Solid electrolytes with both high ionic conductivities and excellent mechanical strength are needed in many electrochemical devices. The invention of ion gels featuring aligned polyanions immersed inside RTILs has shown promise in meeting this demand, but the mechanism behind their superior mechanical strength remains elusive. Using molecular simulations, it is discovered that the high elastic moduli of model PBDT ion gels originate from the RTIL-mediated interactions between the polyanions. This insight is useful for future design of ion gels to improve their transport and mechanical properties. / Ph. D.
3

Electroluminescence in ion gel gated organic polymer semiconductor transistors

Bhat, Shrivalli January 2011 (has links)
This thesis reports the light emission in ion gel gated, thin film organic semiconductor transistors and investigates the light emission mechanism behind these devices. We report that ion gel gated organic polymer semiconductor transistors emit light when the drain source voltage is swept slightly beyond the energy gap of the polymer divided by the elementary charge (Vds > Eg/e). In particular, the light emission in poly(9,9'-dioctylfluorene-co-benzothiadiazole)(F8BT) polymer semiconductor, with 1-ethyl-3-methylimidazoliumbis (trifluoromethylsulfonyl)imide/ poly(styrene-block-ethylene oxide-block-styrene) (EMIM TFSI/ SOS) ion gel as dielectric material is reported. The current-voltage characteristics corresponding to the light emission, where the systematic increase of the drain current, correlated with light emission is reported. In low voltage regime, (Vds < Eg/e), well saturated transistor characteristics are observed. By charge modulation spectroscopy (CMS) study we show that there is a prominent electrochemical doping occurring with gate voltages. Further, owing to the movement of ions with voltages,irrespective of the location of electrodes, we show that the ion gel, bilayer planar devices emit light in Vds > Eg/e regime (without any gate voltages), at room temperature. Based on thelocation of the recombination zone in the proximity of electron injecting electrode and CMS results showing prominent di ffusion of negative ions into the polymer layer, we conclude that the light emitting mechanism is akin to light emitting electrochemical cells (LECs). Even in the the transistor regime, where Vds << Eg/e, with the signatures of increasing drain current for fixed Vg and Vds values, we show that the transistor can not be of purely electrostatic operation alone. We study the fluorescence quenching of an operating bilayer device under a constant bias over a period of time and compare the results with the electroluminescence of the device and show that the formation of the p-n junction within the polymer layer due to the penetrated ions from the gel dielectric into the polymer semiconductor layer on the application of the voltage is the cause behind the light emission. We show that diffusivity of the cation (EMIM) is very low compared to the anion (TFSI). This is consistent with the fact that the recombination zone is near theelectron injecting electrode in these devices. We have developed a theoretical model for the ions movement within the semiconductor polymer matrix governed by both diffusion and drift independently, for the bilayer, polymer ion gel planar, light emitting electrochemical cells. We have further developed a 2- dimensional numerical modelbased on the theoretical model and have compared the results of the numerical model with theresults of a fluorescence probing of the bilayer device with time, at constant potential across the bilayer LEC and report that the drift coefficient of 1x10⁻¹³ cm²/V.s and a diffusion coefficient of 1 x 10⁻¹⁵cm²/V.s for TFSI ions in F8BT matrix.
4

Preparation, Characterization, and Application of Molecular Ionic Composites for High Performance Batteries

Yu, Deyang 03 November 2021 (has links)
A solid electrolyte is a crucial component of any solid state battery. Polymer gel electrolytes have received increasing attention in recent years due to their high ionic conductivity, flexibility, and improved safety. However, a general tradeoff usually exists between the mechanical properties and ionic conductivity in such materials. Molecular ionic composites (MICs) are a new type of rigid polymer gel electrolyte based on ionic liquids (ILs) and a double helical rigid-rod polyamide, poly(2,2′-disulfonyl-4,4′-benzidine terephthalamide) (PBDT). MICs have high ionic conductivity, high thermal and electrochemical stability, and widely tunable and high tensile modulus even at relatively low polymer content. MICs show great promise as solid electrolytes for solid state batteries. This dissertation describes the preparation and characterization of MIC electrolyte membranes. These transparent, flexible, and tough membranes are prepared through a convenient solvent casting process. A large variety of ILs, including both hydrophilic and hydrophobic examples, are suitable to prepare MIC electrolyte membranes by adjusting the solvents used in the casting process. The prepared membranes show a biphasic internal structure consisting of a PBDT-rich “bundle” phase and an IL-rich “puddle” (interconnected fluid) phase. Similar to the bulk MIC ingots prepared previously through an interfacial ion exchange process, the MIC membranes also have high ionic conductivity and tensile modulus at low polymer content. A MIC membrane composed of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr₁₄TFSI), LiTFSI, and PBDT in a mass ratio of 8:1:1 is tested as a solid electrolyte for lithium metal batteries. This electrolyte membrane shows high ionic conductivity and high rigidity. The shear storage modulus of this MIC electrolyte membrane only decreases by 35% when heated to 200 °C from room temperature, suggesting great mechanical stability at high temperatures. The electrolyte membrane is successfully used as solid electrolyte for a Li/LiFePO₄ battery working over a large temperature range from 23 to 150 °C, and the discharge capacity retention of the cell is as high as 99% after 50 cycles at 150 °C. By replacing the IL in the MIC with a charge-neutral liquid, single-ion-conducting polymer gel electrolyte composed of PBDT and polyethylene glycol (PEG) oligomer are obtained. Similar to the MICs, these single-ion-conducting materials also have high Young’s modulus and biphasic internal structures. This study reveals that the counter ion (Li⁺ or Na⁺) of the PBDT has a major effect on both the ionic conductivity and modulus of the materials. Due to the stronger intermolecular interactions, LiPBDT-PEG demonstrates lower ionic conductivity but higher Young’s modulus. This dissertation also evaluates the viability of rigid PBDT as a polymer binder for electrodes. Aqueous solution-processed LiFePO₄ electrodes with only 3 wt% PBDT demonstrate stable cycling over 1000 cycles without obvious capacity decay, and the rate capacity of these aqueous solution-processed electrodes are comparable to the electrodes prepared with conventional poly(vinylidene difluoride) (PVDF) as the binder, suggesting PBDT can serve as a potential electrode binder for commercial applications. / A solid electrolyte is a crucial component of any solid state battery. Polymer gel electrolytes have received increasing attention in recent years due to their high ionic conductivity, flexibility, and improved safety. However, a general tradeoff usually exists between the mechanical properties and ionic conductivity in such materials. Molecular ionic composites (MICs) are a new type of rigid polymer gel electrolyte based on ionic liquids (ILs) and a double helical rigid-rod polyamide, poly(2,2′-disulfonyl-4,4′-benzidine terephthalamide) (PBDT). MICs have high ionic conductivity, high thermal and electrochemical stability, and widely tunable and high tensile modulus even at relatively low polymer content. MICs show great promise as solid electrolytes for solid state batteries. This dissertation describes the preparation and characterization of MIC electrolyte membranes. These transparent, flexible, and tough membranes are prepared through a convenient solvent casting process. A large variety of ILs, including both hydrophilic and hydrophobic examples, are suitable to prepare MIC electrolyte membranes by adjusting the solvents used in the casting process. The prepared membranes show a biphasic internal structure consisting of a PBDT-rich "bundle" phase and an IL-rich "puddle" (interconnected fluid) phase. Similar to the bulk MIC ingots prepared previously through an interfacial ion exchange process, the MIC membranes also have high ionic conductivity and tensile modulus at low polymer content. A MIC membrane composed of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), LiTFSI, and PBDT in a mass ratio of 8:1:1 is tested as a solid electrolyte for lithium metal batteries. This electrolyte membrane shows high ionic conductivity and high rigidity. The shear storage modulus of this MIC electrolyte membrane only decreases by 35% when heated to 200 °C from room temperature, suggesting great mechanical stability at high temperatures. The electrolyte membrane is successfully used as solid electrolyte for a Li/LiFePO4 battery working over a large temperature range from 23 to 150 °C, and the discharge capacity retention of the cell is as high as 99% after 50 cycles at 150 °C. By replacing the IL in the MIC with a charge-neutral liquid, single-ion-conducting polymer gel electrolyte composed of PBDT and polyethylene glycol (PEG) oligomer are obtained. Similar to the MICs, these single-ion-conducting materials also have high Young's modulus and biphasic internal structures. This study reveals that the counter ion (Li+ or Na+) of the PBDT has a major effect on both the ionic conductivity and modulus of the materials. Due to the stronger intermolecular interactions, LiPBDT-PEG demonstrates lower ionic conductivity but higher Young's modulus. This dissertation also evaluates the viability of rigid PBDT as a polymer binder for electrodes. Aqueous solution-processed LiFePO4 electrodes with only 3 wt% PBDT demonstrate stable cycling over 1000 cycles without obvious capacity decay, and the rate capacity of these aqueous solution-processed electrodes are comparable to the electrodes prepared with conventional poly(vinylidene difluoride) (PVDF) as the binder, suggesting PBDT can serve as a potential electrode binder for commercial applications. / Doctor of Philosophy / Solid state batteries are widely considered as the pathway to next-generation high performance batteries. In a solid state lithium battery, the liquid organic carbonate electrolyte is replaced with a solid electrolyte. Polymer gel electrolytes are a type of potential solid electrolyte that have been widely studied in recent decades. This dissertation describes the application of a rigid polymer in preparing polymer gel electrolytes. This highly charged and rigid polymer is a water-soluble polyamide known as PBDT with a double helical structure akin to DNA. Through a modified solvent casting process, a new type of polymer gel electrolyte, known as molecular ionic composite (MIC), is prepared using PBDT and various ionic liquids. Extra salt (which can contain lithium) can also be incorporated into the MIC membrane. This type of new polymer gel electrolyte is rigid with high tensile modulus even at high temperatures and low polymer (PBDT) content. MIC membranes are used as solid electrolytes for lithium metal batteries working over a wide temperature range from 23 to 150 °C. A rigid polymer gel electrolyte can also be obtained by replacing the ionic liquids in MICs with polyethylene glycol. Besides the application in preparing solid electrolytes, PBDT is also evaluated as a polymer binder for aqueous processed electrodes. Preliminary study reveals that PBDT holds great potential for a range of commercial energy storage applications.
5

Molecular Arrangement, Electronic Structure and Transport Properties in Surfactant Gel- and Related Systems Studied by Soft X-ray and Dielectric Spectroscopy

Gråsjö, Johan January 2013 (has links)
This thesis concerns studies of aqueous soft matter systems, especially surfactant micelle systems. The aim has been to study the molecular arrangement and electronic structure of the constituents of, as well as transport properties in such a system. The molecular arrangement and electronic structure has been studied by means of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray spectroscopy (RIXS). The transport properties have been investigated by low-frequency dielectric spectroscopy (LFDS) and small angle X-ray scattering (SAXS) as well as a theoretical modelling. The latter was based on Fick’s laws of the release from binary surfactant system and was validated by experiments. The RIXS and XAS measurements show the electronic structure in bulk water and the influence of the chemical surrounding of the water molecule in bulk water and of the water molecules confined in a micelle lattice. The spectra are highly dependent on the molecular arrangement in such systems. For glycine and sodium polyacrylate RIXS and XAS spectra show features which are unique for carboxyl and carboxylate groups and such measurements can thus be used for fingerprinting. The LFDS and SAXS measurements show a strong correlation between structure in a surfactant/poly-ion system and apparent mobility of surfactants. This conclusion is in line with earlier observations. By the theoretical modelling a predictive model for the surfactant release from a binary surfactant micelle system has been obtained and the importance of different factors for surfactant release has been further clarified.

Page generated in 0.0487 seconds