Spelling suggestions: "subject:"ionpair formation"" "subject:"conpair formation""
1 |
Rôle des états de Rydberg dans la dynamique de photoionisation et de formation de paires d’ions (NO+,O-) de la molécule NO2 : photoémission induite par rayonnement synchrotron et impulsions lasers femtosecondes / The role of Rydberg states in photoionization of NO2 and (NO+,O-) ion pair formation : photoemission induced by synchotron radiation and femtosecond pulsesMarggi Poullain, Sonia 14 January 2014 (has links)
L’étude comparée des réactions de formation de paires d’ions et de simple photoionisation de la molécule NO2 induites par rayonnement synchrotron (RS) d’une part et par impulsions laser femtosecondes (fs) d’autre part, démontre le rôle remarquable de l’excitation résonante d’états de Rydberg dans la dynamique électronique et nucléaire induite. Trois réactions principales, la photoionisation non dissociative (NO2+ (X 1Σ+g) + e), la photoionisation dissociative (NO+ (X 1Σ+) + O(3P) + e) et la formation de paires d'ions, (NO+ (X 1Σ+) + O- (2P)), ont été caractérisées en utilisant la méthode des corrélations vectorielles ou spectroscopie en coïncidence des impulsions du photoélectron et des photoions, auprès des sources RS (SOLEIL, DESIRS) et lasers fs (CEA, Saclay), respectivement. Le diagramme de corrélation des énergies cinétiques électron-ion, première observable issue de ces mesures, met en évidence un partage de l’énergie en excès entre noyaux et électrons qui dépend fortement du mode d’excitation photonique. Les déviations significatives observées par rapport aux profils d’ionisation de type Franck Condon sont attribuées à des couplages vibroniques entre états excités NO2*, tels que ceux induits par une intersection conique. Les chemins réactionnels identifiés confirment le rôle de l’excitation des séries de Rydberg [R*(6a1)-1] et [R*(4b2)-1] intervenant comme états intermédiaires dans l’excitation multiphotonique ou dans le continuum d’ionisation exploré. Une étude complémentaire par spectroscopie à haute résolution des états [R*(6a1)-1] a été mise en œuvre (UBC, Vancouver).Pour une réaction de photoionisation dissociative (PID), l’observable la plus complète est la distribution angulaire des photoélectrons dans le référentiel lié à la vitesse de recul de l’ion fragment (RFPAD) déduite de la mesure de la corrélation vectorielle (Vi, Ve, P). Afin d’accéder aux éléments de matrice dipolaire décrivant la photoionisation de l’état électronique considéré, le formalisme développé en collaboration avec R. R. Lucchese (Texas A&M) décrivant la photoémission dans le référentiel moléculaire pour la simple PID d'une molécule linéaire par excitation à un photon, a été étendu à l'étude des réactions de PID par excitation multiphotonique d'une molécule polyatomique, telle que la molécule NO2 de symétrie C2v. L’analyse multivariée de la RFPAD multiphotonique proposée constitue une stratégie fructueuse en vue d’extraire l’information optimale sur la dynamique complexe de photoionisation et de réaliser une comparaison détaillée entre les résultats expérimentaux et les calculs de photoionisation des états excités de la molécule. / The comparative study of ion pair formation and simple photoionization of the NO2 molecule induced by synchrotron radiation (SR) on the one hand and by femtosecond (fs) pulses on the other hand reveals the remarkable role of Rydberg states in the induced electronic and nuclear dynamics. Three main reactions, namely (NO2+ (X 1Σ+g) + e) non dissociative photoionization, (NO+ (X 1Σ+) + O(3P) + e) dissociative photoionization and (NO+ (X 1Σ+) + O- (2P)) ion pair formation have been characterized using the vector correlation method, or photoion and photoelectron coincidence momentum spectroscopy, at SR sources (SOLEIL DESIRS) and at fs laser platforms (CEA, Saclay), respectively. The electron-ion kinetic energy correlation diagram, which is the first observable obtained from these measurements, highlights the excess energy sharing among nuclei and electrons, which strongly depends on the photon excitation mode. The observed remarkable deviations from Franck Condon ionization profiles are attributed to vibronic couplings such as those induced at a conical intersection. The identified reaction pathways confirm the role of the [R*(6a1)-1] and [R*(4b2)-1] Rydberg series excitation as stepping states in multiphoton excitation or in the explored ionization continua. A complementary study of high resolution spectroscopy of [R*(6a1)-1] Rydberg series has been performed (UBC, Vancouver). For a dissociative photoionization (DPI) process, the most complete observable is the photoelectron angular distribution in the reference frame attached to the recoil ion fragment velocity (RFPAD) deduced from the measured (Vi, Ve, P) vector correlation. In order to get access to the dipole matrix elements describing photoionization of the considered excited electronic state, the formalism developed in collaboration with R. R. Lucchese (Texas A&M) describing molecular frame photoemission for a DPI of a linear molecule by one-photon excitation has been extended to the study of DPI processes induced by multiphoton excitation for a polyatomic molecule, such as the NO2 molecule of C2v symmetry. The proposed multivariate analysis of the multiphoton RFPAD constitutes a successful strategy to extract the optimal information on the complex photoionization dynamics and to perform a detailed comparison between experimental results and calculations of photoionization of the molecular excited states.
|
2 |
Electron Recombination with Small Molecular IonsBrinne Roos, Johanna January 2007 (has links)
<p>In this thesis I have theoretically studied electron recombination processes with small molecular ions.</p><p>In these kind of processes resonant states are involved. To calculate the potential energy for these states as a function of internuclear distance, structure calculations and scattering calculations have to be performed.</p><p>So far I have been studying the ion-pair formation with in electron recombination with H<sub>3</sub><sup>+</sup>. The cross section for this process has been calculated using different kind of models, both a time dependent quantum mechanical and a semiclassical.</p><p>I have also studied the direct process of dissociative recombination of HF<sup>+</sup>. To calculate the total cross section for this process, we have performed wave packet propagation on thirty resonant states and summed up the individual cross sections for these states.</p><p>The cross sections for both these processes have a similar appearance to those measured experimentally in the ion storage ring CRYRING in Stockholm.</p>
|
3 |
Studies of Highly Polar Atomic and Molecular Systems: Quantum Dynamics and the Route to Experimental InvestigationsCOLLISTER, ROBERT A. 09 December 2009 (has links)
Theoretical investigation of the dynamics of adiabatic quantum mechanics in two different, highly polar systems has been made. The systems were chosen for their
fundamental scientific interest, as they represent atoms and molecules with exaggerated properties, as well as ease of experimental study as such highly polar systems are easier to manipulate using readily-available electric fields. A model two-level system is used to derive one approach for maximizing the probability of adiabatic passage through an avoided crossing and this is compared with the classic Landau-Zener result, and the commonly encountered spin-flip problem of a particle with spin located in a rotating magnetic field. This approach is applied to the avoided crossing between the n = 13, n1 − n2 = 11 (dipole moment of 532 D) and the n = 14, n1 − n2 = −12 (dipole moment of -657 D) highly polar Stark states of the lithium atom at 447 kV/m. Ion-pair formation from two neutral lithium atoms, one in the 2s ground state and the other in an excited state, is also investigated. The cross section σ(v) for free ion-pairs is calculated for the initial colliding pairs of atomic states located below the ion-pair threshold. Li(2s) + Li(3d) is seen to possess the largest cross section (σ(v0) = 569.2 a.u.) at its threshold velocity. The implications of this for bound ion-pair, i.e. heavy Rydberg system, production are briefly discussed. Furthermore, experimental progress towards the production of these atomic and molecular systems from a beam of lithium is presented. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-12-09 16:49:41.184
|
4 |
Electron Recombination with Small Molecular IonsBrinne Roos, Johanna January 2007 (has links)
In this thesis I have theoretically studied electron recombination processes with small molecular ions. In these kind of processes resonant states are involved. To calculate the potential energy for these states as a function of internuclear distance, structure calculations and scattering calculations have to be performed. So far I have been studying the ion-pair formation with in electron recombination with H3+. The cross section for this process has been calculated using different kind of models, both a time dependent quantum mechanical and a semiclassical. I have also studied the direct process of dissociative recombination of HF+. To calculate the total cross section for this process, we have performed wave packet propagation on thirty resonant states and summed up the individual cross sections for these states. The cross sections for both these processes have a similar appearance to those measured experimentally in the ion storage ring CRYRING in Stockholm. / QC 20101103
|
5 |
Reaction dynamics on highly excited statesBrinne Roos, Johanna January 2009 (has links)
In this thesis I have performed theoretical studies on the reaction dynamics in few-atom molecules. In particular, I have looked at reaction processes in which highly excited resonant states are involved. When highly excited states are formed, the dynamics becomes complicated and approximations normally used in chemical reaction studies are no longer applicable.To calculate the potential energy curve for some of these states as a function of internuclear distance, a combination of structure calculations and scattering calculations have to be performed, and the reaction dynamics on the potentials has been studied using both time-independent and time-dependent methods.The processes that have been studied and which are discussed in this thesis are ion-pair formation in electron recombination with H3+, dissociative recombination and ion-pair formation of HF+, mutual neutralization in H++F- collisions and dissociative recombination of BeH+. Isotope effects in these reactions have also been investigated. Our calculated cross sections are compared with experimentally measured cross sections for these reactions.
|
Page generated in 0.105 seconds