Spelling suggestions: "subject:"bodentemperatur"" "subject:"probentemperatur""
1 |
Experimental investigation of the plasma-wall transitionLunt, Tilmann 07 November 2008 (has links)
In der vorliegenden Arbeit wurde das Strömungsverhalten eines magnetisierten Argonplasmas beim Auftreffen auf eine neutralisierende Oberfläche untersucht. Mit Hilfe der Laserinduzierten Fluoreszenz wurde dazu nicht-invasiv die Geschwindigkeitsverteilung der Ionen mit einer Ortsauflösung von standardmäßig dz=0.5 mm als Funktion des Abstandes zur Oberfläche gemessen. Zwei Situationen wurden untersucht (a): praktisch das ganze Plasma strömt auf ein großes Target (Durchmesser 100 mm) und (b) die Größe des Targets ist wesentlich kleiner (Durchmesser 15 mm) als der Durchmesser der Plasmasäule. Unmittelbar vor der Oberfläche war in beiden Fällen die Strömungsgeschwindigkeit u mindestens so groß wie die Ionenschallgeschwindigkeit cs, genau wie von Bohm bereits 1949 vorhergesagt[]. Unter fusionsrelevanten Bedingungen ist dies die erste direkte Beobachtung des Bohmkriteriums. Bei Annäherung an die Oberfläche steigt die Machzahl M=u/cs von 0.5 auf 1 auf typischen Skalenlängen lambda_a=30 mm bzw. lambda_b=5 mm an. Um diese kurzen Längen erklären zu können wurden die Messdaten in (a) mit einem Stoß-Diffusionsmodell und im Falle von (b) mit dem Modell von Hutchinson[] verglichen. Eine gute Übereinstimmung in (a) wurde erzielt, wenn eine sehr niedrige Neutralgastemperatur von etwa 400 K angenommen wird. Die Messdaten in (b) werden sehr gut durch das Modell wiedergegeben, wenn ein Transportkoeffizient von D=20 m²/s angenommen wird. Ein derartig hoher Transport kann unmöglich allein durch Diffusion verursacht werden. Teilweise kann dieser Transport anhand der endlichen Gyroradien erklärt werden, vermutlich aber spielen auch zeitabhängige Phänomene, wie z.B. Driftwellen eine wichtige Rolle. Weiterhin wurde die Abhängigkeit von dem Winkel zwischen Flächennormalen und B-Feld untersucht. Die unmittelbar vor der Oberfläche auftretenden Überschallströmungen werden verhältnismäßig gut von dem Modell von Chodura[] beschrieben. Im Gegensatz dazu ist die Größe der Zone in der Machzahlen größer eins auftreten deutlich kleiner, als vom Modell vorhergesagt. / In the present work the streaming behavior of a magnetized argon plasma impinging on a neutralizing surface was investigated. For that purpose the ion velocity distribution was measured non-invasively as a function of the distance to the surface by means of Laser Induced Fluorescence. The spatial resolution was typically dz=0.5 mm. Two situations are investigated, (a): when practically the whole plasma streams onto a large target (diameter 100 mm), and (b): when the size of the target (diameter 15 mm) is significantly smaller than the diameter of the plasma column. In both cases the streaming velocity u was at least as high as the ion acoustic sound speed, as already predicted by Bohm in 1949. Under fusion relevant conditions this is the first direct observation of the Bohm criterion. Approaching the target surface the Mach number M=u/c_s increases from values of around 0.5 to 1 on typical scales of lambda_a=30 mm and lambda_b=5 mm, respectively. In order to explain these very short scale lengths the measured data were compared with a collisional-diffusive model in the case of (a) and with Hutchinson''s model[] in the case of (b). A good agreement was achieved in (a) by assuming a very low neutral gas temperature of about 400 K. In (b) the model fits the data excellently when the transport coefficient is chosen as high as D=20 m²/s. Such a high transport cannot be caused solely by diffusion. Partly it is explained by finite gyro-radii effects, but presumably time dependent phenomena, like drift waves, play an important role. In addition the dependence on the angle between surface normal and B-field was investigated. The supersonic fluxes found in the immediate vicinity of the surface are described fairly well by the model developed by Chodura[]. By contrast the size of the region, where Mach numbers greater one appear is significantly smaller than predicted.
|
Page generated in 0.1189 seconds