• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriedades elétricas da descarga corona obtida com geometrias do tipo ponta e plano / Electrical properties of corona discharge in point-to-plane geometry

Job, Aldo Eloizo 27 June 1989 (has links)
Usando geometrias do tipo ponta e plano estudou-se as características elétricas da descarga corona positiva e negativa. Mediram-se as distribuições da densidade de corrente elétrica e do campo elétrico sobre o plano coletor dos íons. São discutidos os resultados obtidos para o sistema ponta planos e para o sistema em que o campo elétrico externo é aplicado através de uma placa adicional colocada perto da ponta. Neste último caso os resultados são interpretados com um modelo teórico que supõe que os íons se movem direção perpendicular entre as placas, sob a ação de um campo constante e lateralmente sob o campo de repulsão da carga espacial. / Electric characteristics of a positive and negative corona discharge were studied for geometries of the type point and plane. The electric current density and the electric field distributions on the collector plane were measured. We discuss the results obtained with the point and plane geometry and with the geometry were a external electric field is applied by means of an additional metallic plate fixed near the point. For the latter geometry the results were interpreted by using a theoretical model in which it is assumed that the ions drift in the direction perpendicular to the plates under a constant electric field and laterally under the field of the ionic space charge.
2

Propriedades elétricas da descarga corona obtida com geometrias do tipo ponta e plano / Electrical properties of corona discharge in point-to-plane geometry

Aldo Eloizo Job 27 June 1989 (has links)
Usando geometrias do tipo ponta e plano estudou-se as características elétricas da descarga corona positiva e negativa. Mediram-se as distribuições da densidade de corrente elétrica e do campo elétrico sobre o plano coletor dos íons. São discutidos os resultados obtidos para o sistema ponta planos e para o sistema em que o campo elétrico externo é aplicado através de uma placa adicional colocada perto da ponta. Neste último caso os resultados são interpretados com um modelo teórico que supõe que os íons se movem direção perpendicular entre as placas, sob a ação de um campo constante e lateralmente sob o campo de repulsão da carga espacial. / Electric characteristics of a positive and negative corona discharge were studied for geometries of the type point and plane. The electric current density and the electric field distributions on the collector plane were measured. We discuss the results obtained with the point and plane geometry and with the geometry were a external electric field is applied by means of an additional metallic plate fixed near the point. For the latter geometry the results were interpreted by using a theoretical model in which it is assumed that the ions drift in the direction perpendicular to the plates under a constant electric field and laterally under the field of the ionic space charge.
3

Rational design of DNA-based lipid membrane pores

Göpfrich, Kerstin January 2017 (has links)
DNA nanotechnology has revolutionised our capability to shape and control three-dimensional structures at sub-nanometre length scales. In this thesis, we use DNA to build synthetic membrane-inserting channels. Porphyrin and cholesterol tags serve as membrane anchors to facilitate insertion into the lipid membrane. With atomic force microscopy, confocal imaging and ionic current recordings we characterise our DNA nanochannels that mimic their natural protein-based counterparts in form and function. We find that they exhibit voltage-dependent conductance states. Amongst other architectures, we create the largest man-made pore in a lipid membrane to date approaching the electrical diameter of the nuclear pore complex. Pushing the boundaries on the other end of the spectrum, we demonstrate the ultimately smallest DNA membrane pore made from a single membrane-spanning DNA duplex. Thereby, we proof that ion conduction across lipid membranes does not always require a physical channel. With experiments and MD simulations we show that ions flow through a toroidal pore emerging at the DNA-lipid interface around the duplex. Our DNA pores spanning two orders of magnitude in conductance and molecular weight showcase the rational design of synthetic channels inspired by the diversity of nature - from ion channels to porins.
4

Modeling of Ion Transport for Micro/Nano Size Particles in Coulter Counter Application

Qin, Zhenpeng 09 June 2009 (has links)
No description available.
5

Integration of Micropore and Nanopore Features with Optofluidic Waveguides for Single Particle Sensing

Holmes, Matthew R. 28 June 2011 (has links) (PDF)
This dissertation outlines the research and development of ground-breaking nanometer sized openings (nanopores) integrated with an on-chip optofluidic platform. This platform represents a significant advancement for single nanoparticle sensing. In this work specifically, the integrated optofluidic platform has been used to electrically and optically filter and detect single nanoparticles using ionic current blockade and fluorescence experiments. The correlation of electrical and optical signal has provided the highest sensitivity single nanoparticle measurements ever taken with integrated optofluidic platforms. The particular optofluidic platform used for this work is an antiresonant reflecting optical waveguide (ARROW). ARROW hollow and solid core waveguides are interference based waveguides that are designed to guide light in low index media such as liquids and gases. Because of this unique guiding property, ARROW hollow cores can be used to sense and analyze low concentrations of single particles. Additionally, because ARROW platforms are based upon standard silicon processing techniques and materials, they are miniature sized (~1 cm2), inexpensive, highly parallelizable, provide a high degree of design flexibility, and can be integrated with many different optical and electrical components and sources. Finally, because of the miniature, integrated nature of the ARROW platform, it has the potential to be incorporated into hand held devices that could provide quick, inexpensive, user-friendly diagnostics. The ARROW platform has been through many revisions in the past several years in an attempt to improve performance and functionality. Specifically, advanced fabrication techniques that have been used to decrease the production time, increase the yield, and improve the optical quality of ARROW platforms are discussed in the first part of this work. These advancements were all developed in order to facilitate the production of high quality integrated nanopores and ARROW platforms. The second part of this work then focuses on the actual integration of micrometer sized openings (micropores) and nanopores in the hollow waveguide section of ARROW platforms for filtering, detecting, and analyzing single nanoparticles. The successes and attempts at achieving these results are the basis of this dissertation of work.
6

Transport d'ions en phase aqueuse à l'intérieur de nanotubes de carbone mono-feuillets / Transport of ions in aqueous phase through single-walled carbon nanotubes

Yazda, Khadija 22 April 2016 (has links)
Le transport d’ions et de molécules à l’intérieur de canaux nanométriques diffère du transport à l’échelle micro- ou macroscopique du fait de rapports surface/volume bien plus élevés conduisant à de nouveaux phénomènes de transport. Les nanotubes de carbone avec leurs propriétés uniques apparaissent comme des canaux exceptionnellement intéressants pour mieux comprendre le transport ionique et fluidique à l’échelle nanométrique et pour d’éventuelles applications nanofluidiques. Ce travail est dédié à l’étude et la compréhension des mécanismes de transport des ions en phase aqueuse à l’intérieur de nanotubes de carbone, un sujet particulièrement important pour le développement d’applications dans le domaine du séquençage de l’ADN ou de l’analyse biochimique de petites molécules.Durant ce travail, un protocole a été développé pour la fabrication de dispositifs microfluidiques intégrant des nanotubes de carbone et permettant des mesures à la fois électriques et optiques. Les propriétés de transport à l’intérieur de nanotubes de carbone mono-feuillets ont été étudiées en combinant mesures de courant ionique sous application d’un champ électrique, spectroscopie Raman et modélisation théorique. Les résultats obtenus par cette étude démontrent la forte influence de l’environnement du nanotube sur la densité et la distribution des charges de surface et donc sur les propriétés de transport à l’intérieur de ces nano-canaux dont les parois sont d’épaisseur atomique. Les ordres de grandeur des courants ioniques mesurés expérimentalement sont en bon accord avec les modèles standards de transport ionique dans un nanocanal en considérant des densités de charge de surface et des longueurs de glissement physiquement raisonnables. De manière importante, ce travail a permis de mettre en évidence un transport ionique activé par champ électrique à l’intérieur de nanotubes de carbone, qui peut être expliqué en considérant un modèle de transport plus élaboré intégrant une ou plusieurs barrières d’énergie le long du nanotube. Les résultats de la caractérisation Raman suggèrent que ces barrières d’énergie résultent d’un dopage hétérogène le long du nanotube induit par la matrice polymère. / Ionic and molecular transport inside nanometer scale geometries is distinct from micro- and macroscale transport due to the large surface-to-volume ratios which lead to unique transport phenomena. Carbon nanotubes with their peerless properties appear as exceptional channels for understanding fluidic and ionic transport at the nanoscale and for developing nanofluidics-based applications. This work is devoted at studying and understanding the transport mechanisms of ions in aqueous phase through carbon nanotubes, which is especially important for various applications such as DNA sequencing or biochemical analysis of small molecules.During this work, a protocol was developed for the fabrication of carbon nanotubes-based microfluidic devices which are suitable for both electrical and optical measurements. The transport properties through single-walled carbon nanotubes were investigated by combining ion current measurements under an applied voltage, Raman spectroscopy and theoretical modelling. The results obtained from this study highlight the strong influence of the nanotube environment on their surface charge density and distribution and hence on the ionic transport properties through these nanochannels having walls of atomic thickness. The orders of magnitude of the ionic currents experimentally measured are in good agreement with the standard models of ion transport through nanochannels when considering physically reasonable values of surface charge densities and slip lengths. Importantly, this work allowed us to evidence a novel voltage-activated transport of ions through carbon nanotubes which can be accounted for by considering a more elaborate transport model including the presence of one or more energy barriers along the nanotube. Raman characterization results support that these energy barriers result from a heterogeneous doping along the nanotubes induced by the polymer matrix.
7

Analýza elektrických vlastností membrán srdečních buněk / Analysis of electrical properties of cardiac cells

Švecová, Olga January 2014 (has links)
The diploma thesis is focused on the analysis of the electrical properties of the heart cells membranes. The main goal of this work is to answer to what extent it is possible to infer from experimental data on the detailed mechanism of interaction of substances with channels. The work also presents a detailed description of methods of measurement of membrane voltage and current, which are used in the experimental measurements. There are also discussed the individual channels of the cell membrane and ion currents, which arise as a response to the rectangular pulse voltage. There is also described the effect of various substances on the properties of ion currents flowing through the cell membrane.
8

Computational study of single protein sensing using nanopores

Cardoch, Sebastian January 2020 (has links)
Identifying the protein content in a cell in a fast and reliable manner has become a relevant goal in the field of proteomics. This thesis computationally explores the potential for silicon nitride nanopores to sense and distinguish single miniproteins, which are small domains that promise to facilitate the systematic study of larger proteins. Sensing and identification of these biomolecules using nanopores happens by studying modulations in ionic current during translocation. The approach taken in this work was to study two miniproteins of similar geometry, using a cylindrical-shaped pore. I employed molecular mechanics to compare occupied pore currents computed based on the trajectory of ions. I further used density functional theory along with relative surface accessibility values to compute changes in interaction energies for single amino acids and obtain relative dwell times. While the protein remained inside the nanopore, I found no noticeable differences in the occupied pore currents of the two miniproteins for systems subject to 0.5 and 1.0 V bias voltages. Dwell times were estimated based on the translocation time of a protein that exhibits no interaction with the pore walls. I found that both miniproteins feel an attractive force to the pore wall and estimated their relative dwell times to differ by one order of magnitude. This means even in cases where two miniproteins are indistinguishable by magnitude changes in the ionic current, the dwell time might still be used to identify them. This work was an initial investigation that can be further developed to increase the accuracy of the results and be expanded to assess other miniproteins with the goal to aid future experimental work.
9

Zum Einfluss elektrochemischer Doppelschichten auf den Stofftransport in nanoskaligen Elektrolytsystemen:

Kubeil, Clemens 28 February 2017 (has links) (PDF)
Es besteht enormes Interesse den Stofftransport in nanoskaligen Systemen zu verstehen und selektiv zu steuern, um analytische und synthetische Anwendungen zu entwickeln, aber auch um die physiologischen Prozesse lebender Zellen zu entschlüsseln. Im Rahmen dieser Arbeit wurde der Einfluss der elektrochemischen Doppelschicht an ausgewählten nanoskaligen Elektrolytsystemen untersucht. Die Gleichrichtung von Ionenströmen (engl. Ionic Current Rectification ICR) in Nanoporen mit einer Oberflächenladung äußert sich in einer gekrümmten Strom-Spannungs-Kurve. Die Überlappung von innerem und äußerem Potential ist dabei hinsichtlich der Ionenverteilung und somit der Porenleitfähigkeit einander verstärkend oder gegenläufig. Auf Grundlage dieses Mechanismus wurde die Gleichrichtung bei einem sehr großen Verhältnis von Porenöffnung zu Debye-Länge erklärt. Ferner wurde mittels der eingeführten relativen Leitfähigkeit κ´ die verschiedenen Leitfähigkeitszustände in Abhängigkeit der Elektrolytkonzentration und Temperatur sichtbar gemacht und Implikationen für Sensoranwendungen wie z.B. dem resistiven Pulszähler zur Partikelanalyse abgeleitet. Es wurde ein numerisches Modell basierend auf dem Poisson-Nernst-Planck-Gleichungssystem entwickelt, um die Translokation eines Nanopartikels durch eine konische Nanopore bei einer geringen Leitsalzkonzentration zu beschreiben. Neben dem klassischen Volumenausschluss-Effekt tritt zusätzlich ein Gleichrichtungseffekt (ICR-Effekt) in der Pore auf. Eine Analyse zur Entflechtung von Partikelgröße und Partikelladung aus der Pulshöhe und Pulsform wurde erfolgreich durchgeführt. Wie der Stofftransport durch eine Oberflächenladung auf dem umgebenden Material einer Nanoelektrode beeinflusst wird, wurde anhand des voltammetrischen Verhaltens diskutiert. An sehr kleinen Elektroden (< 10 nm) ist demnach der Einfluss der elektrochemischen Doppelschicht auf die Strom-Spannungs-Kurve besonders groß und kann auch bei Vorliegen eines hohen Leitsalzüberschusses nicht vernachlässigt werden. In leitsalzfreien Elektrolyten sind die gefundenen Effekte so deutlich, dass sie auch an größeren Elektroden experimentell zweifelsfrei festgestellt worden sind. / There is an enormous interest in understanding and selectively controlling the material transport in nanoscale systems to develop analytical and synthetic applications, but also to decipher the physiological processes of living cells. Within this thesis, the influence of the electrochemical double layer on selected nanoscale electrolyte systems was studied. Ionic Current Rectification (ICR) in nanopores carrying a surface charge manifests itself in a non-linear current-voltage-curve. The overlap of interior and exterior potential is cumulative or opposing with regard to the ion distribution and therefore the pore conductivity. Based on this mechanism, ICR for very large ratios of pore size and Debye length was explained. Furthermore, the different conducting states as a function of electrolyte concentration and temperature were visualized by introducing the relative conductivity κ´ and hence implications for sensor applications such as the resistive pulse sensor have been deduced. A numerical model based on the Poisson-Nernst-Planck-equations was developed to describe the translocation of a nanoparticle through a conical nanopore at a low electrolyte concentration. An additional rectification effect (ICR effect) occurs in the pore beside the conventional volume exclusion effect. An analysis was successfully performed to deconstruct the particle size and particle charge from the pulse height and shape. The material transport is affected by a surface charge on the shrouding material of nanoelectrodes as it was discussed by means of the voltammetric behaviour. The influence of the electrochemical double layer on the current-voltage-curve is particularly large at very small electrodes (< 10 nm) and cannot be neglected even at a high excess of supporting electrolyte. The observed effects were pronounced in unsupported electrolytes, so that they could be clearly detected experimentally at even larger electrodes.
10

Zum Einfluss elektrochemischer Doppelschichten auf den Stofftransport in nanoskaligen Elektrolytsystemen:: Leitfähigkeit von Nanoporen und Voltammetrie an Nanoelektroden

Kubeil, Clemens 26 October 2016 (has links)
Es besteht enormes Interesse den Stofftransport in nanoskaligen Systemen zu verstehen und selektiv zu steuern, um analytische und synthetische Anwendungen zu entwickeln, aber auch um die physiologischen Prozesse lebender Zellen zu entschlüsseln. Im Rahmen dieser Arbeit wurde der Einfluss der elektrochemischen Doppelschicht an ausgewählten nanoskaligen Elektrolytsystemen untersucht. Die Gleichrichtung von Ionenströmen (engl. Ionic Current Rectification ICR) in Nanoporen mit einer Oberflächenladung äußert sich in einer gekrümmten Strom-Spannungs-Kurve. Die Überlappung von innerem und äußerem Potential ist dabei hinsichtlich der Ionenverteilung und somit der Porenleitfähigkeit einander verstärkend oder gegenläufig. Auf Grundlage dieses Mechanismus wurde die Gleichrichtung bei einem sehr großen Verhältnis von Porenöffnung zu Debye-Länge erklärt. Ferner wurde mittels der eingeführten relativen Leitfähigkeit κ´ die verschiedenen Leitfähigkeitszustände in Abhängigkeit der Elektrolytkonzentration und Temperatur sichtbar gemacht und Implikationen für Sensoranwendungen wie z.B. dem resistiven Pulszähler zur Partikelanalyse abgeleitet. Es wurde ein numerisches Modell basierend auf dem Poisson-Nernst-Planck-Gleichungssystem entwickelt, um die Translokation eines Nanopartikels durch eine konische Nanopore bei einer geringen Leitsalzkonzentration zu beschreiben. Neben dem klassischen Volumenausschluss-Effekt tritt zusätzlich ein Gleichrichtungseffekt (ICR-Effekt) in der Pore auf. Eine Analyse zur Entflechtung von Partikelgröße und Partikelladung aus der Pulshöhe und Pulsform wurde erfolgreich durchgeführt. Wie der Stofftransport durch eine Oberflächenladung auf dem umgebenden Material einer Nanoelektrode beeinflusst wird, wurde anhand des voltammetrischen Verhaltens diskutiert. An sehr kleinen Elektroden (< 10 nm) ist demnach der Einfluss der elektrochemischen Doppelschicht auf die Strom-Spannungs-Kurve besonders groß und kann auch bei Vorliegen eines hohen Leitsalzüberschusses nicht vernachlässigt werden. In leitsalzfreien Elektrolyten sind die gefundenen Effekte so deutlich, dass sie auch an größeren Elektroden experimentell zweifelsfrei festgestellt worden sind. / There is an enormous interest in understanding and selectively controlling the material transport in nanoscale systems to develop analytical and synthetic applications, but also to decipher the physiological processes of living cells. Within this thesis, the influence of the electrochemical double layer on selected nanoscale electrolyte systems was studied. Ionic Current Rectification (ICR) in nanopores carrying a surface charge manifests itself in a non-linear current-voltage-curve. The overlap of interior and exterior potential is cumulative or opposing with regard to the ion distribution and therefore the pore conductivity. Based on this mechanism, ICR for very large ratios of pore size and Debye length was explained. Furthermore, the different conducting states as a function of electrolyte concentration and temperature were visualized by introducing the relative conductivity κ´ and hence implications for sensor applications such as the resistive pulse sensor have been deduced. A numerical model based on the Poisson-Nernst-Planck-equations was developed to describe the translocation of a nanoparticle through a conical nanopore at a low electrolyte concentration. An additional rectification effect (ICR effect) occurs in the pore beside the conventional volume exclusion effect. An analysis was successfully performed to deconstruct the particle size and particle charge from the pulse height and shape. The material transport is affected by a surface charge on the shrouding material of nanoelectrodes as it was discussed by means of the voltammetric behaviour. The influence of the electrochemical double layer on the current-voltage-curve is particularly large at very small electrodes (< 10 nm) and cannot be neglected even at a high excess of supporting electrolyte. The observed effects were pronounced in unsupported electrolytes, so that they could be clearly detected experimentally at even larger electrodes.

Page generated in 0.0926 seconds